Research on the Feasibility of Shape-Stabilized Phase-Change Materials at Lower Temperature Used in the Phase Change Wall

2012 ◽  
Vol 446-449 ◽  
pp. 1559-1562
Author(s):  
Quan Ying Yan ◽  
Ran Huo ◽  
Li Li Jin

The shape-stabilized phase-change paraffin at lower temperature is an ideal material used in the phase-change wall. It can enhance the thermal storage capacity of the wall and save energy. The thermal properties of shape-stabilized phase-change paraffin were studied experimentally in this paper. The phase change temperature, latent heat and the stability of shape-stabilized phase-change paraffin with different component were analyzed. The critical mass fraction of paraffin required in the materials was discussed. The results may provide the basis for the application in the practical engineering in the future.

2013 ◽  
Vol 800 ◽  
pp. 243-246
Author(s):  
Li Hang Yue ◽  
Quan Ying Yan ◽  
Zhen Bang Ruan

Shape-stabilized phase change materials can store thermal energy and save energy when it is added into the wall. The phase change temperature, latent heat and the stability of shape-stabilized phase change materials with different component were studied experimentally. The critical mass fraction of paraffin required in the materials is given. It is proved that the shape-stabilized phase change material is ideal material used in the phase change wall because it has good stability and uniformity, higher latent heat and suitable phase change temperature.


2021 ◽  
Vol 11 (8) ◽  
pp. 3612
Author(s):  
Stefan Gschwander ◽  
Sophia Niedermaier ◽  
Sebastian Gamisch ◽  
Moritz Kick ◽  
Franziska Klünder ◽  
...  

Phase-change materials (PCM) play off their advantages over conventional heat storage media when used within narrow temperature ranges. Many cooling and temperature buffering applications, such as cold storage and battery cooling, are operated within small temperature differences, and therefore, they are well-suited for the application of these promising materials. In this study, the storage capacities of different phase-change material emulsions are analysed under consideration of the phase transition behaviour and supercooling effect, which are caused by the submicron size scale of the PCM particles in the emulsion. For comparison reasons, the same formulation for the emulsions was used to emulsify 35 wt.% of different paraffins with different purities and melting temperatures between 16 and 40 °C. Enthalpy curves based on differential scanning calorimeter (DSC) measurements are used to calculate the storage capacities within the characteristic and defined temperatures. The enthalpy differences for the emulsions, including the first phase transition, are in a range between 69 and 96 kJ/kg within temperature differences between 6.5 and 10 K. This led to an increase of the storage capacity by a factor of 2–2.7 in comparison to water operated within the same temperature intervals. The study also shows that purer paraffins, which have a much higher enthalpy than blends, reveal, in some cases, a lower increase of the storage capacity in the comparison due to unfavourable crystallisation behaviour when emulsified. In a second analysis, the stability of emulsions was investigated by applying 100 thermal cycles with defined mechanical stress at the same time. An analysis of the viscosity, particle size and melting crystallisation behaviour was done by showing the changes in each property due to the cycling.


2019 ◽  
Vol 45 (12) ◽  
pp. 1204-1208 ◽  
Author(s):  
V. M. Egorov ◽  
A. K. Borisov ◽  
V. A. Marikhin

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7223
Author(s):  
Marco A. Orozco ◽  
Karen Acurio ◽  
Francis Vásquez-Aza ◽  
Javier Martínez-Gómez ◽  
Andres Chico-Proano

This study presents the energy storage potential of nitrate salts for specific applications in energy systems that use renewable resources. For this, the thermal, chemical, and morphological characterization of 11 samples of nitrate salts as phase change materials (PCM) was conducted. Specifically, sodium nitrate (NaNO3), sodium nitrite (NaNO2), and potassium nitrate (KNO3) were considered as base materials; and various binary and ternary mixtures were evaluated. For the evaluation of the materials, differential Fourier transform infrared spectroscopy (FTIR), scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) to identify the temperature and enthalpy of phase change, thermal stability, microstructure, and the identification of functional groups were applied. Among the relevant results, sodium nitrite presented the highest phase change enthalpy of 220.7 J/g, and the mixture of 50% NaNO3 and 50% NaNO2 presented an enthalpy of 185.6 J/g with a phase change start and end temperature of 228.4 and 238.6 °C, respectively. This result indicates that sodium nitrite mixtures allow the thermal storage capacity of PCMs to increase. In conclusion, these materials are suitable for medium and high-temperature thermal energy storage systems due to their thermal and chemical stability, and high thermal storage capacity.


Sci ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 27 ◽  
Author(s):  
Zakaria Dakhli ◽  
Khaled Chaffar ◽  
Zoubeir Lafhaj

When focusing on materials science in civil engineering, the current trend is to investigate the use of innovative solutions in order to enhance thermal and energy performances. This trend is amplified with the need for a sustainable development strategy for the construction sector. This paper assesses the integration of a Phase Change Material (PCM) in cement intended for building construction. The key characteristic of PCMs is their capacity to absorb energy and restore it. In building construction, this feature could be harnessed to save energy by incorporating PCMs in the materials used. In this study, passive integration of PCM in cement was tested and thermal properties of such an integration was assessed. The results provide insights into how PCMs affect cement as part of the concrete mixture, thus identifying the contribution of PCM-based cements in concrete mixtures.


2013 ◽  
Vol 773 ◽  
pp. 534-537 ◽  
Author(s):  
Li Li Feng ◽  
Jing Jing Tong ◽  
Chong Yun Wang

Shape-stabilized phase change material (PCM) composed of polyethylene glycol and silica hollow nanospheres was prepared by a vacuum impregnating method. Thermal properties of the composite PCM were investigated by various techniques. Lower phase change temperature and enthalpy of the composite PCM were observed. It is concluded that the phase change properties of the composite PCM are influenced by the adsorption confinement of the PEG segments from the porous structure of the silica hollow nanospheres.


Sign in / Sign up

Export Citation Format

Share Document