Secret Error-Correcting Network Coding against Eavesdropping and Pollution Attacks

2012 ◽  
Vol 457-458 ◽  
pp. 1499-1507 ◽  
Author(s):  
Si Guang Chen ◽  
Meng Wu ◽  
Wei Feng Lu

In this work we consider the problem of designing a secret error-correcting network coding scheme against an adversary that can re-select the tapping links in different time slot and inject z erroneous packets into network. We first derive a necessary condition for keeping the transmitted information secret from the adversary, while the network is only subject to the eavesdropping attack. We then design an error-correcting scheme by combining the rank-metric codes with shared secret model, which can decode the transmitted information correctly provided a sufficiently large q. With that, a secret error-correcting network coding is proposed by combining this error-correcting scheme with secret communication. We show that under the requirement of communication can achieve a rate of packets. Moreover, it ensures that the communicated information is reliable and information-theoretic security from the adversary. In particular, the requirement of packet length is not as large as the required in [12]. Finally, the security and performance analyses illustrate the characteristics of our scheme.

2012 ◽  
Vol 31 (6) ◽  
pp. 1512-1514
Author(s):  
Shu-fen NIU ◽  
Cai-fen WANG ◽  
Xue-yan LIU

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
René Schwonnek ◽  
Koon Tong Goh ◽  
Ignatius W. Primaatmaja ◽  
Ernest Y.-Z. Tan ◽  
Ramona Wolf ◽  
...  

AbstractDevice-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against channel attacks, but also against attacks exploiting implementation loopholes. In recent years, much progress has been made towards realising the first DIQKD experiments, but current proposals are just out of reach of today’s loophole-free Bell experiments. Here, we significantly narrow the gap between the theory and practice of DIQKD with a simple variant of the original protocol based on the celebrated Clauser-Horne-Shimony-Holt (CHSH) Bell inequality. By using two randomly chosen key generating bases instead of one, we show that our protocol significantly improves over the original DIQKD protocol, enabling positive keys in the high noise regime for the first time. We also compute the finite-key security of the protocol for general attacks, showing that approximately 108–1010 measurement rounds are needed to achieve positive rates using state-of-the-art experimental parameters. Our proposed DIQKD protocol thus represents a highly promising path towards the first realisation of DIQKD in practice.


2021 ◽  
pp. 1-1
Author(s):  
Alexandros E. Tzikas ◽  
Panagiotis D. Diamantoulakis ◽  
George K. Karagiannidis

2014 ◽  
Vol 33 ◽  
pp. 1460361 ◽  
Author(s):  
Lachlan J. Gunn ◽  
James M. Chappell ◽  
Andrew Allison ◽  
Derek Abbott

While information-theoretic security is often associated with the one-time pad and quantum key distribution, noisy transport media leave room for classical techniques and even covert operation. Transit times across the public internet exhibit a degree of randomness, and cannot be determined noiselessly by an eavesdropper. We demonstrate the use of these measurements for information-theoretically secure communication over the public internet.


2021 ◽  
Author(s):  
Daewook Kim ◽  
Wonhyuk Cho ◽  
Barbara Allen

Social economy organizations (SEOs), designed to do good for society, have been attracting significant attention as an alternative to purely profit-driven businesses. However, the sustainability of these hybrid organizations has been questioned due to the challenges in meeting the dual bottom-lines of financial performance and social purpose. This article takes a causal-process tracing (CPT) case study approach and analyzes eight SEOs to investigate the common characteristics of sustainable SEOs. The results of the analysis show that effective leadership is a sufficient (but not necessary) condition for the survival of SEOs, while leadership is a necessary (but not sufficient) condition for SEOs’ thriving. Business competitiveness is found to be necessary for SEOs’ long-term success and performance over time. Collaborative networking is a contributory condition for SEOs thriving but not a necessary condition for their survival.


Sign in / Sign up

Export Citation Format

Share Document