Research Progress of Fiber Reinforced Cement Composites

2012 ◽  
Vol 457-458 ◽  
pp. 549-552
Author(s):  
Xue Jian Shi ◽  
Xiao Qing Wu

Based on the importantce of component of cement-based composites, introduced the fiber reinforced cementitious composites in fiber type and cement-based materials and the main types of filler, and their effect on the interface between the fiber and the cement.

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 518 ◽  
Author(s):  
Ana Balea ◽  
Elena Fuente ◽  
Angeles Blanco ◽  
Carlos Negro

Nanocelluloses (NCs) are bio-based nano-structurated products that open up new solutions for natural material sciences. Although a high number of papers have described their production, properties, and potential applications in multiple industrial sectors, no review to date has focused on their possible use in cementitious composites, which is the aim of this review. It describes how they could be applied in the manufacturing process as a raw material or an additive. NCs improve mechanical properties (internal bonding strength, modulus of elasticity (MOE), and modulus of rupture (MOR)), alter the rheology of the cement paste, and affect the physical properties of cements/cementitious composites. Additionally, the interactions between NCs and the other components of the fiber cement matrix are analyzed. The final result depends on many factors, such as the NC type, the dosage addition mode, the dispersion, the matrix type, and the curing process. However, all of these factors have not been studied in full so far. This review has also identified a number of unexplored areas of great potential for future research in relation to NC applications for fiber-reinforced cement composites, which will include their use as a surface treatment agent, an anionic flocculant, or an additive for wastewater treatment. Although NCs remain expensive, the market perspective is very promising.


2014 ◽  
Vol 629-630 ◽  
pp. 487-493
Author(s):  
Bao Min Wang ◽  
Shuai Liu ◽  
Yu Han

For their remarkable properties, carbon nanotubes (CNTs) are considered as promising candidate for next generation of high performance and functional cement-based composites in 21st century. The paper focuses on the dispersibility, mechanical property, durability, conductivity and piezoresistivity properties of CNTs reinforced cement-based materials. A homogenous CNTs-suspension was obtained using the method which combined ultrasonic processing with mechanical stirring, electric-field introduction and surfactant decoration. The low weight fraction of CNTs improved the mechanical properties of CNTs/cement composites. The compressive strength and toughness were correspondingly improved. The added CNTs improved the sulfate attack resistance and impermeability properties of the prepared CNTs/cement mixes. Meanwhile, the added CNTs improved the pressure-sensitive, conductivity and electromagnetic absorption properties of the prepared mixes, which laid a foundation of multi-functional concrete and structure. It concludes that the key issue for CNTs/cement composites is the dispersibility and the compatibility of CNTs in cement matrix. The solving solutions are put forward. In the meantime, the further research prospects in this research field are forecasted.


Carbon Trends ◽  
2021 ◽  
Vol 3 ◽  
pp. 100030
Author(s):  
Jin Hee Kim ◽  
Jong Hun Han ◽  
Seungki Hong ◽  
Doo-Won Kim ◽  
Sang Hee Park ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 1112
Author(s):  
Nikita Belyakov ◽  
Olga Smirnova ◽  
Aleksandr Alekseev ◽  
Hongbo Tan

The problem of damage accumulation in fiber-reinforced concrete to structures supporting underground workings and tunnel linings against dynamic loading is insufficiently studied. The mechanical properties were determined and the mechanism of destruction of fiber-reinforced concrete with different reinforcement parameters is described. The parameters of the Concrete Damaged Plasticity model for fiber-reinforced concrete at different reinforcement properties are based on the results of lab experiments. Numerical simulation of the composite concrete was performed in the Simulia Abaqus software package (Dassault Systemes, Vélizy-Villacoublay, France). Modeling of tunnel lining based on fiber-reinforced concrete was performed under seismic loading.


2005 ◽  
Vol 35 (2) ◽  
pp. 296-300 ◽  
Author(s):  
Yiping Ma ◽  
Beirong Zhu ◽  
Muhua Tan

Sign in / Sign up

Export Citation Format

Share Document