Torque Control and Pitch Control Strategy in VSCF Wind Turbine above Rated Wind Speed

2012 ◽  
Vol 463-464 ◽  
pp. 1715-1720
Author(s):  
Rui Ma ◽  
Shu Ju Hu ◽  
Xun Bo Fu ◽  
Hong Hua Xu ◽  
Nian Hong Li

Above rated wind speed, the wind turbine speed and output power are maintained near the rated values through the coordinative control of torque and pitch angle. Due to the non-linear behavior of the wind turbine, the traditional PID control is not effective in the pitch control. And accurate mathematical model of wind turbine is very difficult to get. In order to solve the problem, the fuzzy adaptive tuning PID control algorithm is proposed in the paper. About torque control strategy, constant torque control mode and constant power control mode are simulated respectively. Based on the analysis and comparison of the advantages and disadvantages of both modes, a mix control mode is proposed in order to give consideration to both torque and power. Simulation was carried out with the proposed torque control and pitch control strategy in MATLAB and GH Bladed software. The results proved that output power is optimized and the response of the wind turbine is good

2011 ◽  
Vol 383-390 ◽  
pp. 2501-2506
Author(s):  
Li Na Liu ◽  
Hui Juan Qi ◽  
Bin Li

The parameters of large wind turbine need to be adjusted timely to avoid excessive wind energy that will cause damage on the wind turbine itself. Based on the simplified mathematical model of wind turbine, we got the relationship curve between its parameters. When the speed of wind was higher than the rated wind speed, we figure out the value of pitch angle during the changes of effective wind speed to keep rated output power. Neural Network used to train the data and pitch control system was built, it used to adjust pitch angle once the wind changes, and maintain the output power at rated value. The complex mathematical relation can be replaced by the trained network model. Detailed simulation results have confirmed the feasibility and performance of the optimal control strategy, which protect the wind turbine from damage and prolong its service life.


2013 ◽  
Vol 394 ◽  
pp. 404-409
Author(s):  
Feng Zhang ◽  
Ye Hui Lu ◽  
Feng Qiao ◽  
Chong Chong Bai

A large variable speed constant frequency (VSCF) wind power system usually adopts the variable pitch control technology to ensure the output power is steady to ensure the safety of the wind power system above the rated wind speed. But the strong nonlinear and large moment of inertia of wind turbine result in the difficulty of variable pitch control, both simple fuzzy control and conventional PID control can not achieve a good control effect. Concerning this issue, variable pitch control algorithm is proposed based on self-tuning fuzzy adaptive PID control strategy. According to the dynamic model of VSCF, a simulation model of wind turbine control system is built in this paper with Matlab/Simulink. When the wind speed is random variable above the rated speed, the simulation results show that the proposed control strategy can keep the output power of the system around the rated power.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Lei Wang ◽  
Shan Zuo ◽  
Y. D. Song ◽  
Zheng Zhou

Offshore floating wind turbine (OFWT) has been a challenging research spot because of the high-quality wind power and complex load environment. This paper focuses on the research of variable torque control of offshore wind turbine on Spar floating platform. The control objective in below-rated wind speed region is to optimize the output power by tracking the optimal tip-speed ratio and ideal power curve. Aiming at the external disturbances and nonlinear uncertain dynamic systems of OFWT because of the proximity to load centers and strong wave coupling, this paper proposes an advanced radial basis function (RBF) neural network approach for torque control of OFWT system at speeds lower than rated wind speed. The robust RBF neural network weight adaptive rules are acquired based on the Lyapunov stability analysis. The proposed control approach is tested and compared with the NREL baseline controller using the “NREL offshore 5 MW wind turbine” model mounted on a Spar floating platform run on FAST and Matlab/Simulink, operating in the below-rated wind speed condition. The simulation results show a better performance in tracking the optimal output power curve, therefore, completing the maximum wind energy utilization.


2021 ◽  
Vol 13 (6) ◽  
pp. 3235
Author(s):  
J. Enrique Sierra-García ◽  
Matilde Santos

Wind energy plays a key role in the sustainability of the worldwide energy system. It is forecasted to be the main source of energy supply by 2050. However, for this prediction to become reality, there are still technological challenges to be addressed. One of them is the control of the wind turbine in order to improve its energy efficiency. In this work, a new hybrid pitch-control strategy is proposed that combines a lookup table and a neural network. The table and the RBF neural network complement each other. The neural network learns to compensate for the errors in the mapping function implemented by the lookup table, and in turn, the table facilitates the learning of the neural network. This synergy of techniques provides better results than if the techniques were applied individually. Furthermore, it is shown how the neural network is able to control the pitch even if the lookup table is poorly designed. The operation of the proposed control strategy is compared with the neural control without the table, with a PID regulator, and with the combination of the PID and the lookup table. In all cases, the proposed hybrid control strategy achieves better results in terms of output power error.


2020 ◽  
Vol 190 ◽  
pp. 00019
Author(s):  
Katherin Indriawati ◽  
Choirul Mufit ◽  
Andi Rahmadiansah

The variation of wind speed causes the electric power generated by the turbine also varies. To obtain maximum power, the rotor speed of wind turbines must be optimally rated. The rotor speed can be controlled by manipulating the torque from the generator; this method is called Torque Control. In that case, a DC-DC converter is needed as the control actuator. In this study, a buck converter-based supervisory control design was performed on the Horizontal-axis wind turbines (HAWT). Supervisory control is composed of two control loops arranged in cascade, and there is a formula algorithm as the supervisory level. The primary loop uses proportional control mode with a proportional gain of 0.3, whereas in the secondary loop using proportional-integral control mode with a proportional gain of 5.2 and an integral gain of 0.1. The Supervisory control has been implemented successfully and resulted in an average increase in turbine power of 4.1 % at 5 m s–1 and 10.58 % at 6 m s–1 and 11.65 % at 7 m s–1, compared to wind turbine systems without speed control.


KnE Energy ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 172
Author(s):  
Tedy Harsanto ◽  
Haryo Dwi Prananto ◽  
Esmar Budi ◽  
Hadi Nasbey

<p>A vertical axis wind turbine triple-stage savonius type has been created by using simple materials to generate electricity for the alternative wind power plant. The objective of this research is to design a simple wind turbine which can operate with low wind speed. The turbine was designed by making three savonius rotors and then varied the structure of angle on the three rotors, 0˚, 90˚ and 120˚. The dimension of the three rotors are created equal with each rotor diameter 35 cm and each rotor height 19 cm. The turbine was tested by using blower as the wind sources. Through the measurements obtained the comparisons of output power, rotation of turbine, and the level of efficiency generated by the three variations. The result showed that the turbine with angle of 120˚ operate most optimally because it is able to produce the highest output power and highest rotation of turbine which is 0.346 Watt and 222.7 RPM. </p><p><strong>Keywords</strong>: Output power; savonius turbine; triple-stage; the structure of angle</p>


Sign in / Sign up

Export Citation Format

Share Document