The Simulation of Pitch Control System for Variable Speed Wind Turbine Based on Neural Network

2011 ◽  
Vol 383-390 ◽  
pp. 2501-2506
Author(s):  
Li Na Liu ◽  
Hui Juan Qi ◽  
Bin Li

The parameters of large wind turbine need to be adjusted timely to avoid excessive wind energy that will cause damage on the wind turbine itself. Based on the simplified mathematical model of wind turbine, we got the relationship curve between its parameters. When the speed of wind was higher than the rated wind speed, we figure out the value of pitch angle during the changes of effective wind speed to keep rated output power. Neural Network used to train the data and pitch control system was built, it used to adjust pitch angle once the wind changes, and maintain the output power at rated value. The complex mathematical relation can be replaced by the trained network model. Detailed simulation results have confirmed the feasibility and performance of the optimal control strategy, which protect the wind turbine from damage and prolong its service life.

2011 ◽  
Vol 347-353 ◽  
pp. 2323-2329
Author(s):  
Zhi Chao Lan ◽  
Lin Tao Hu ◽  
Yin Xue ◽  
De Liang Zen

An increasing number of large wind turbines with a variable-speed variable pitch control mechanism are developed to improve the response speed of wind turbines and get maximum active power .Designing a reasonable pitch control system requires both a good control scheme and a more accurate wind turbine model. Base on the analysis of wind turbines’ principle, a local linearization model of wind turbine is built by using linearization method of small deviation in this paper. The model’s inputs are the data of wind speed and pitch angle, and the output is the active power. The accuracy of the model is verified by studying the active power output of wind turbine under different circumstances in which the pitch angle changes with a constant wind speed and the wind speed changes with a constant pitch angle. At the same time, this paper provides pitch control program based on internal model control after analyzing the disadvantages of PID pitch controller. When the wind speed is beyond the rating, the active power can be limited reasonably around the power rating of wind turbines by adjusting the pitch angle.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2031
Author(s):  
Jongmin Cheon ◽  
Jinwook Kim ◽  
Joohoon Lee ◽  
Kichang Lee ◽  
Youngkiu Choi

This paper deals with the development of a wind turbine pitch control system and the construction of a Hardware-in-the-Loop-Simulation (HILS) testbed for the performance test of the pitch control system. When the wind speed exceeds the rated wind speed, the wind turbine pitch controller adjusts the blade pitch angles collectively to ensure that the rotor speed maintains the rated rotor speed. The pitch controller with the individual pitch control function can add individual pitch angles into the collective pitch angles to reduce the mechanical load applied to the blade periodically due to wind shear. Large wind turbines often experience mechanical loads caused by wind shear phenomena. To verify the performance of the pitch control system before applying it to an actual wind turbine, the pitch control system is tested on the HILS testbed, which acts like an actual wind turbine system. The testbed for evaluating the developed pitch control system consists of the pitch control system, a real-time unit for simulating the wind and the operations of the wind turbine, an operational computer with a human–machine interface, a load system for simulating the actual wind load applied to each blade, and a real pitch bearing. Through the several tests based on HILS test bed, how well the pitch controller performed the given roles for each area in the entire wind speed area from cut-in to cut-out wind speed can be shown.


1994 ◽  
Vol 116 (3) ◽  
pp. 153-157
Author(s):  
G. McNerney

The U.S. Windpower 56-100 is a three-bladed, free yaw wind turbine, using full span blade pitch control for power regulation. It is theoretically possible to increase the energy capture of the 56-100 by adjusting the blade angle to the optimum pitch angle on a continuing basis at below rated speeds. This concept was field tested on the 56-100, but it was found that the optimum pitch control logic opens a pathway for the 56-100 to fall into stall operation when the winds are above the rated wind speed. The 56-100 then operates as a stall-regulated wind turbine with an overall reduction of energy capture and an increase in system loads.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Hikaru Matsumiya ◽  
Ryosuke Ito ◽  
Masafumi Kawakami ◽  
Daisuke Matsushita ◽  
Makoto Iida ◽  
...  

A 1-kW small horizontal-axis wind turbine “Airdolphin,” capable of high wind operation up to 50 m/s without pitch control system, is now under global round robin tests. The present paper reports a series of technical approach including design/analysis, track tests, and field tests conducted in support to the design process. One windy site “Erimo” and one offshore site “Fukushima” were chosen. For example, at “Erimo,” a record of one-day generation was 8.831 kWh on November 13, 2006 (day-averaged wind speed; 11.8 m/s) with 36.8% of capacity factor. An operation data under an attack of typhoon with 50 m/s maximum wind speed demonstrated the technical concepts of high wind operation and safety. A new term “capatureability” as an indicator of WT performance was proposed.


2012 ◽  
Vol 463-464 ◽  
pp. 1715-1720
Author(s):  
Rui Ma ◽  
Shu Ju Hu ◽  
Xun Bo Fu ◽  
Hong Hua Xu ◽  
Nian Hong Li

Above rated wind speed, the wind turbine speed and output power are maintained near the rated values through the coordinative control of torque and pitch angle. Due to the non-linear behavior of the wind turbine, the traditional PID control is not effective in the pitch control. And accurate mathematical model of wind turbine is very difficult to get. In order to solve the problem, the fuzzy adaptive tuning PID control algorithm is proposed in the paper. About torque control strategy, constant torque control mode and constant power control mode are simulated respectively. Based on the analysis and comparison of the advantages and disadvantages of both modes, a mix control mode is proposed in order to give consideration to both torque and power. Simulation was carried out with the proposed torque control and pitch control strategy in MATLAB and GH Bladed software. The results proved that output power is optimized and the response of the wind turbine is good


2011 ◽  
Vol 201-203 ◽  
pp. 590-593
Author(s):  
Yi Gang Kong ◽  
Hao Gu ◽  
Jie Wang ◽  
Zhi Xin Wang

This paper reviews the principle of power production, and analyses the influnece on aerodynamic load and output power due to the variation of pitch angle. For three-bladed upwind horizontal axis wind turbine, the blade pitch control is used primarily to adjust the power coefficient and obtain the optimal power at high wind speed, but it also make aerodynamic load, such as edgewise, flapwise and torsion moment, change during variable pitch control. Hydraulic mechanism is used in a process requiring large driving forces and torques, fast response and high stiffness. Therefore, the variable pitch mechanism is operated using electro-hydraulic proportional technology in this paper. Simulation results are presented and analysed to show that aerodynamic load and output power are sensitivity to pitch angle for wind turbine blade. These works lay foundation for the further studying of individual pitch, power control, fatigue and dynamical stability for wind turbine.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Lei Wang ◽  
Shan Zuo ◽  
Y. D. Song ◽  
Zheng Zhou

Offshore floating wind turbine (OFWT) has been a challenging research spot because of the high-quality wind power and complex load environment. This paper focuses on the research of variable torque control of offshore wind turbine on Spar floating platform. The control objective in below-rated wind speed region is to optimize the output power by tracking the optimal tip-speed ratio and ideal power curve. Aiming at the external disturbances and nonlinear uncertain dynamic systems of OFWT because of the proximity to load centers and strong wave coupling, this paper proposes an advanced radial basis function (RBF) neural network approach for torque control of OFWT system at speeds lower than rated wind speed. The robust RBF neural network weight adaptive rules are acquired based on the Lyapunov stability analysis. The proposed control approach is tested and compared with the NREL baseline controller using the “NREL offshore 5 MW wind turbine” model mounted on a Spar floating platform run on FAST and Matlab/Simulink, operating in the below-rated wind speed condition. The simulation results show a better performance in tracking the optimal output power curve, therefore, completing the maximum wind energy utilization.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3622 ◽  
Author(s):  
Md Rasel Sarkar ◽  
Sabariah Julai ◽  
Chong Wen Tong ◽  
Moslem Uddin ◽  
M.F. Romlie ◽  
...  

The production of maximum wind energy requires controlling various parts of medium to large-scale wind turbines (WTs). This paper presents a robust pitch angle control system for the rated wind turbine power at a wide range of simulated wind speeds by means of a proportional–integral–derivative (PID) controller. In addition, ant colony optimization (ACO), particle swarm optimization (PSO), and classical Ziegler–Nichols (Z-N) algorithms have been used for tuning the PID controller parameters to obtain within rated stable output power of WTs from fluctuating wind speeds. The proposed system is simulated under fast wind speed variation, and its results are compared with those of the PID-ZN controller and PID-PSO to verify its effeteness. The proposed approach contains several benefits including simple implementation, as well as tolerance of turbine parameters and several nonparametric uncertainties. Robust control of the generator output power with wind-speed variations can also be considered a significant advantage of this strategy. Theoretical analyses, as well as simulation results, indicate that the proposed controller can perform better in a wide range of wind speed compared with the PID-ZN and PID-PSO controllers. The WT model and hybrid controllers (PID-ACO and PID-PSO) have been developed in MATLAB/Simulink with validated controller models. The hybrid PID-ACO controller was found to be the most suitable in comparison to the PID-PSO and conventional PID. The root mean square (RMS) error calculated between the desired power and the WT’s output power with PID-ACO is found to be 0.00036, which is the smallest result among the studied controllers.


Sign in / Sign up

Export Citation Format

Share Document