Efficient Simulation of Grain Burning Surface Regression

2012 ◽  
Vol 466-467 ◽  
pp. 314-318
Author(s):  
You Quan Liu ◽  
Kang Xue Yin ◽  
Fu Ting Bao ◽  
Yang Liu ◽  
En Hua Wu

The computation of grain burning surface regression plays a very important role in the internal ballistic performance evaluation of solid rocket motor, however, the traditional methods such as geometry-based one could not handle the self-intersection and characteristic geometric element disappearing problems. This paper presents an effective and efficient framework to simulate 3D grain burning surface regression with level set method which is combined with Fast Marching technique to constrain the calculation area only around the burning surface. At last, a typical grain example is given by our framework to verify our method’s effectiveness and efficiency.

Author(s):  
Guilherme Lourenço Mejia

Solid rocket motors (SRM) are extensively employed in satellite launchers, missiles and gas generators. Design considers propulsive parameters with dimensional, manufacture, thermal and structural constraints. Solid propellant geometry and computation of its burning rate are essential for the calculation of pressure and thrust vs time curves. The propellant grain geometry changes during SRM burning are also important for structural integrity and analysis. A computational tool for tracking the propagation of tridimensional interfaces and shapes is then necessary. In this sense, the objective of this work is to present the developed computational tool (named RSIM) to simulate the burning surface regression during the combustion process of a solid propellant. The SRM internal ballistics simulation is based on 3D propagation, using the level set method approach. Geometrical and thermodynamic data are used as input for the computation, while simulation results of geometry and chamber pressure versus time are presented in test cases.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Wei Xianggeng ◽  
Bo Tao ◽  
Wang Pengbo ◽  
Ma Xinjian ◽  
Lou Yongchun ◽  
...  

Unexpected pressure rise may occur in the end-burning grain solid rocket motor. It is generally believed that this phenomenon is caused by the nonparallel layer combustion of the burning surface, resulting in the increase of burning rate along the inhibitor. In order to explain the cause of this phenomenon, the experimental investigation on four different end configurations were carried out. Based on the X-ray real-time radiography (RTR) technique, a new method for determining the dynamic burning rate of propellant and obtaining the real-time end-burning profile was developed. From the real-time images of the burning surface, it is found that there was a phenomenon of nonuniform burning surface displacement in the end-burning grain solid rocket motor. Through image processing, the real-time burning rate of grain center line and the real-time cone angle are obtained. Based on the analysis of the real-time burning rate at different positions of the end surface, the end face cone burning process in the motor working process is obtained. The closer to the shell, the higher the burning rate of the propellant. Considering the actual structure of this end-burning grain motor, it is speculated that the main cause of the cone burning of the grain may be due to the heat conduction of the metal wall. By adjusting the initial shape of the grain end surface, the operating pressure of the combustion chamber can be basically unchanged, so as to meet the mission requirements. The results show that the method can measure the burning rate of solid propellant in real time and provide support for the study of nonuniform combustion of solid propellant.


Author(s):  
A.E. Kiryushkin ◽  
◽  
L.L. Minkov ◽  

The axisymmetric solid rocket motor (SRM) with an “umbrella” shape is considered in this paper. The numerical algorithm based on the inverse Lax-Wendroff procedure for a gas dynamic equation and on the level-set method for tracking the burning surface is overviewed for internal ballistics problems. Assuming that the propellant combustion proceeds in a quasi-stationary regime and a mass flow from the burning surface depends on the pressure raised to the power of parameter ν, the numerical computations of intra-chamber combustion product flows during the main-firing phase are carried out using the numerical algorithm developed for “umbrella”-shaped SRM at different parameter values. The approximation convergence of flow parameters in a case of the stationary propellant surface and average intra-chamber pressure for all the time of motor operation is examined. The numerical simulation results are obtained and analyzed for different “umbrella” inclination angles. Though the developed algorithm has been applied to the motors with a specific shape, it can also be used for propellant grains of different shapes and is easily extended to 3D models.


2011 ◽  
Vol 63-64 ◽  
pp. 621-626
Author(s):  
Zai Cheng Wang ◽  
Chun Lan Jiang ◽  
Ming Li

Although the rocket propulsion technologies have been used for several decades, the traditional motor can not meet the special rotating requirement. A kind of spinning solid rocket motor (SSRM) which used as power device of some kinds of dispenser was introduced. This kind of motor has the structure characterization for tangential nozzles. Its design scheme and prediction of interior ballistic performance were discussed. And the main factors should to be considered in design were analyzed comprehensively. In order to research working performance of the SSRM static test was carried out. The calculation and test results indicate that the design can satisfy general requirement of its application normally.


2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
David R. Greatrix

A general numerical model based on the Zeldovich-Novozhilov solid-phase energy conservation result for unsteady solid-propellant burning is presented in this paper. Unlike past models, the integrated temperature distribution in the solid phase is utilized directly for estimating instantaneous burning rate (rather than the thermal gradient at the burning surface). The burning model is general in the sense that the model may be incorporated for various propellant burning-rate mechanisms. Given the availability of pressure-related experimental data in the open literature, varying static pressure is the principal mechanism of interest in this study. The example predicted results presented in this paper are to a substantial extent consistent with the corresponding experimental firing response data.


2015 ◽  
Vol 798 ◽  
pp. 576-581
Author(s):  
Hao Xu ◽  
Fu Ting Bao ◽  
Chen Cheng ◽  
Bin Hang Wang

In the assessment of internal ballistic performance reliability of Solid Rocket Motor (SRM), eigenvalue discriminance method has long been used. In order to avoid the limitations of the traditional methods, a curve similarity discriminance modification combined with Hausdorff Distance was introduced. A Monte-Carlo simulation model of internal ballistic performance was established, and several uncertain parameters were chosen. A sample analysis of performance reliability of a designed SRM was presented. The result was credible, which proved the modification is feasible and it can meet the needs of the assessment of the internal ballistic performance reliability.


Sign in / Sign up

Export Citation Format

Share Document