Coupling Model Analysis on Fluid Structure Interaction in Lifting Pipeling Based on ADINA

2012 ◽  
Vol 468-471 ◽  
pp. 238-244
Author(s):  
Zhao Wang ◽  
Zhi Jin Zhou ◽  
Hao Lu ◽  
Ze Jun Wen ◽  
Yi Min Xia

Using finite element software ADINA, three coupling models on fluid-structure interaction among internal fluid—pipe—external fluid in the lifting pipeline were researched. Firstly, coupling finite element model on fluid structure interaction of lifting pipeline was established and the first sixth order natural frequencies and principal vibration modes were attained at different ore conveying volume concentration and cross-section size of pipeline;Then natural frequencies of three couplings were compared with two couplings and no coupling according to the above condition, and FSI effect on natural frequency of pipeline was discussed. The calculation results were shown that the natural frequency of the pipe and its relative error reduced with the volume concentration and the relative wall thickness increased, which explain the reason that has better accuracy considering three couplings than other .These results have certain directive significance on the dynamic response, structure design and study of reduction vibration of lifting pipeline.

Author(s):  
Yao Di ◽  
Cai Lijian ◽  
Meng Jian ◽  
Zhao Jintao

Based on the basic principle of fluid-structure interaction, this paper make a finite element analysis of seismic on upper water tank of HPR1000 outer containment by CEL method in ABAQUS software. Firstly, structure is simulated the by Lagrange grid and the water in upper water tank by Eulerian grid; secondly, coupling contact between water and structure is defined; finally, the calculation results are got by running an explicit dynamic solver to makes a time history analysis of fluid-structure interaction finite element model under the seismic, and the results will be used in the structure design of outer containment and upper water tank.


2014 ◽  
Vol 1065-1069 ◽  
pp. 569-574
Author(s):  
Min Zhe Zhou ◽  
Tong Chun Li ◽  
Yuan Ding ◽  
Xiao Chun Zhou

Coupled vibration of water and stop log gate in the layered water intake structure will occur under the condition of the sudden load changes. A fluid-structure interaction (FSI) finite element model of the layered water intake structure of a hydropower station was established by using the finite element software ADINA to simulate the process of power on and off and the FSI phenomena of stop log gate during each process, and also verify the security of the scheme. The results show that fluid-structure interaction has a significant impact on the running of the layered water intake.


Author(s):  
Prabu Ganesh Ravindren ◽  
Kirti Ghia ◽  
Urmila Ghia

Recent studies of the joined-wing configuration of the High Altitude Long Endurance (HALE) aircraft have been performed by analyzing the aerodynamic and structural behaviors separately. In the present work, a fluid-structure interaction (FSI) analysis is performed, where the fluid pressure on the wing, and the corresponding non-linear structural deformation, are analyzed simultaneously using a finite-element matrix which couples both fluid and structural solution vectors. An unsteady, viscous flow past the high-aspect ratio wing causes it to undergo large deflections, thus changing the domain shape at each time step. The finite element software ANSYS 11.0 is used for the structural analysis and CFX 11.0 is used for the fluid analysis. The structural mesh of the semi-monocoque joined-wing consists of finite elements to model the skin panel, ribs and spars. Appropriate mass and stress distributions are applied across the joined-wing structure [Kaloyanova et al. (2005)], which has been optimized in order to reduce global and local buckling. The fluid region is meshed with very high mesh density at the fluid-structure interface and where flow separation is predicted across the joint of the wing. The FSI module uses a sequentially-coupled finite element equation, where the main coupling matrix utilizes the direction of the normal vector defined for each pair of coincident fluid and structural element faces at the interface [ANSYS 11.0 Documentation]. The k-omega turbulence model captures the fine-scale turbulence effects in the flow. An angle of attack of 12°, at a Mach number of 0.6 [Rangarajan et al. (2003)], is used in the simulation. A 1-way FSI analysis has been performed to verify the proper transfer of loads across the fluid-structure interface. The CFX pressure results on the wing were transferred across the comparatively coarser mesh on the structural surface. A maximum deflection of 16 ft is found at the wing tip with a calculated lift coefficient of 1.35. The results have been compared with the previous study and have proven to be highly accurate. This will be taken as the first step for the 2-way simulation. The effect of a coupled 2-way FSI analysis on the HALE aircraft joined wing configuration will be shown. The structural deformation history will be presented, showing the displacement of the joined-wing, along the wing span over a period of aerodynamic loading. The fluid-structure interface meshing and the convergence at each time step, based on the quantities transferred across the interface will also be discussed.


Author(s):  
Bhuiyan Shameem Mahmood Ebna Hai ◽  
Markus Bause

Advanced composite materials such as Carbon Fiber Reinforced Plastics (CFRP) are being applied to many aircraft structures in order to improve performance and reduce weight. Most composites have strong, stiff fibers in a matrix which is weaker and less stiff. However, aircraft wings can break due to Fluid-Structure Interaction (FSI) oscillations or material fatigue. This paper focuses on the analysis of a non-linear fluid-structure interaction problem and its solution in the finite element software package DOpElib: the deal.II based optimization library. The principal aim of this research is to explore and understand the behaviour of the fluid-structure interaction during the impact of a deformable material (e.g. an aircraft wing) on air. Here we briefly describe the analysis of incompressible Navier-Stokes and Elastodynamic equations in the arbitrary Lagrangian-Eulerian (ALE) frameworks in order to numerically simulate the FSI effect on a double wedge airfoil. Since analytical solutions are only available in special cases, the equation needs to be solved by numerical methods. This coupled problem is defined in a monolithic framework and fractional-step-θ time stepping scheme are implemented. Spatial discretization is based on a Galerkin finite element scheme. The non-linear system is solved by a Newton method. The implementation using the software library package DOpElib and deal.II serves for the computation of different fluid-structure configurations.


Author(s):  
Praveen Bhat ◽  
Satish Shenoy B ◽  
Raghuvir Pai

Conventional method of performing Elasto-hydrodynamic Lubrication (EHL) analysis on a partial arc bearing involves simplification of actual physical model and developing complex codes. This paper presents the overall EHL analysis of a radialy adjustable single 60° partial arc bearing using the sequential application of Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD). Here the coupled field analysis uses the capabilities of commercially available Finite Element Software ANSYS/FLOTRAN and the technique of Fluid Structure Interaction (FSI). The pressure field has been obtained using CFD considering the flow to be laminar. Stress distribution and deformation in the pad due to resulting pressure force is obtained using Finite Element Method (FEM), satisfying the boundary conditions. The stress distribution indicates the critical points in the pad. In this paper the static characteristics of radialy adjustable single 60° partial arc bearings are predicted for different eccentricity ratios and length to diameter (L/D) ratios. The results show reasonable agreement in general.


Sign in / Sign up

Export Citation Format

Share Document