Investigation on the Effect of Process Parameters on Hardness of Components Produced by Direct Metal Laser Sintering (DMLS)

2012 ◽  
Vol 488-489 ◽  
pp. 1414-1418 ◽  
Author(s):  
C.D. Naiju ◽  
K. Annamalai ◽  
P.K. Manoj ◽  
K.M. Ayaz

Direct metal laser sintering (DMLS) is one of the methods in layer manufacturing technologies by which metal powder can be directly used to produce both prototype and production tools. The components manufactured by DMLS should have essential hardness for its application in the industry. This study was carried out to determine the optimum process parameters influencing the hardness of the components produced by DMLS. Sintering speed, hatch spacing, post contouring, infiltration and hatch type are the process parameters taken up for study. Statistical design of experiments using Taguchi’s orthogonal array was employed for this study. The experimental data obtained were analyzed using ANOVA. From the results, it is found that one of the process parameters; scan spacing affects the hardness of the parts produced by this technology to a significant extent.

2020 ◽  
Vol 8 (4) ◽  
pp. 170-182 ◽  
Author(s):  
A. Zenani ◽  
T. C. Dzogbewu ◽  
W. B. Du Preez ◽  
I. Yadroitsev

2018 ◽  
Vol 2 (3) ◽  
pp. 55 ◽  
Author(s):  
Piera Alvarez ◽  
M. Montealegre ◽  
Jose Pulido-Jiménez ◽  
Jon Arrizubieta

Laser Cladding is one of the leading processes within Additive Manufacturing technologies, which has concentrated a considerable amount of effort on its development. In regard to the latter, the current study aims to summarize the influence of the most relevant process parameters in the laser cladding processing of single and compound volumes (solid forms) made from AISI 316L stainless steel powders and using a coaxial nozzle for their deposition. Process speed, applied laser power and powder flow are considered to be the main variables affecting the laser cladding in single clads, whereas overlap percentage and overlapping strategy also become relevant when dealing with multiple clads. By setting appropriate values for each process parameter, the main goal of this paper is to develop a processing window in which a good metallurgical bond between the delivered powder and the substrate is obtained, trying simultaneously to maintain processing times at their lowest value possible. Conventional metallography techniques were performed on the cross sections of the laser tracks to measure the effective dimensions of clads, height and width, as well as the resulting dilution value. Besides the influence of the overlap between contiguous clads and layers, physical defects such as porosity and cracks were also evaluated. Optimum process parameters to maximize productivity were defined as 13 mm/s, 2500 W, 30% of overlap and a 25 g/min powder feed rate.


2010 ◽  
Vol 43 ◽  
pp. 578-582 ◽  
Author(s):  
C.Y. Wang ◽  
Q. Dong ◽  
X.X. Shen

Warpage is a crucial factor to accuracy of sintering part in selective laser sintering (SLS) process. In this paper, The influence of process parameters on warpage when sintering polystyrene(PS) materials in SLS are investigated. The laser power, scanning speed, hatch spacing, layer thickness as well as temperature of powder are considered as the main process parameters. The results showed that warpage increases with the increase of hatch space. Contary to it, warpage decreases with the increase of laser power. Warpage decreases with the increase of layer thickness between 0.16~0.18mm and changes little with increase of the thickness. Warpage increases along with the increase of scanning speed but decreases when the speed is over about 2000mm/s. When the temperature changes between 82°C-86°C, warpage decreases little with the increase of temperature. But further increase of temperature leads to warpage decreasing sharply when the temperature changes between 86°C-90°C.


Sign in / Sign up

Export Citation Format

Share Document