Study on the Ductile-Mode Milling of Brittle Ceramics

2012 ◽  
Vol 490-495 ◽  
pp. 3654-3657
Author(s):  
Xiang Cheng ◽  
Bin Gao ◽  
Jun Ying Liu ◽  
Xian Hai Yang

Hard and brittle materials such as silicon and ceramic materials are difficult to machining due to their brittle properties. By the ductile-mode machining, delicate features with high accuracy can be created on these materials by mechanical micro/nano machining. This paper introduced the experimental study on the ductile-mode milling of ceramics. First, the experimental background and plans have been introduced. Then, on the sub-micron milling center, experimental results show that ductile-mode machining can be achieved. Both machining parameters and machining conditions are very important in order to realize the ductile-mode machining

2011 ◽  
Vol 320 ◽  
pp. 259-262
Author(s):  
Xu Ran ◽  
Zhe Ming Zhu ◽  
Hao Tang

The mechanical behavior of multi-cracks under compression has become a very important project in the field of fracture mechanics and rock mechanics. In this paper, based on the previous theoretical results of the failure criterion for brittle materials under compression, experiment study is implemented. The specimens are square plates and are made of cement, sand and water, and the cracks are made by using a very thin film (0.1 mm). The relations of material compressive strength versus crack spacing and the lateral confining stress are obtained from experimental results. The experimental results agree well with the failure criterion for brittle materials under compression, which indicates that the criterion is effective and applicable.


Author(s):  
F. Guadalupe Cabrera-Covarrubias ◽  
J. Manuel Gómez-Soberón ◽  
J. Luis Almaral-Sánchez ◽  
S. Paola Arredondo-Rea ◽  
M. Consolación Gómez-Soberón ◽  
...  

The difficult current environmental situation, caused by construction industry residues containing ceramic materials could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε); therefore this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0, 10, 20, 30, 50 and 100%), such as: the density, the compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analysis process of the results are those of: σ (elastic ranges and failure maximum), ε (elastic ranges and failure maximum), and Resilience and Toughness; in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content). At the end of the investigation it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the prediction equations produced could be used in cases of similar applications.


2013 ◽  
Vol 7 (3) ◽  
pp. 278-284 ◽  
Author(s):  
Kunitaka Kuriyama ◽  
◽  
Masahiko Fukuta ◽  
Katsuhiko Sekiya ◽  
Keiji Yamada ◽  
...  

It is strongly wished that hard and brittle materials could be used in a wide variety of fields because of their great material characteristics. For now, however, minute profiling or high-efficiency cutting of these materials has not yet been put into practice due to their hardness. At the same time, there have been numerous reports available on ductile mode cutting for hard and brittle materials in response to the increasing demand. Very smoothly finished surfaces can reportedly be generated through the work of a material removal mechanism similar to plastic deformation, done by microminiaturizing cutting units with the sharp cutting edges of tools. Because of the extremely narrow ductile mode regions, however, forced cutting processing, which includes cutting work, demands extremely high motion performance or rigidity of machine tools, and this makes it difficult to realize stable ductile mode cutting. On the other hand, pressure cutting processing similar to polishing is known to be capable of producing extremely smooth finished surfaces on hard and brittle materials; this suggests that we could realize stable ductile mode cutting that will always create the same depths of cut by controlling the insertion forces on the tools. In this paper, in order to realize stable ductile mode cutting, we have devised and prototyped a constant pressure cutting device which can regulate cutting forces by regulating supply pressure with air static pressure bearings. We have investigated the relationships between the pressure supplied in the cutting direction and the cutting forces in order to get static pressure characteristics of the prototype device. We have also carried out experiments to cut hard and brittle materials with the prototype constant pressure cutting device mounted on the tool post of an ultraprecision machine tool to prove the effectiveness of the constant pressure cutting device for the ductile mode cutting of hard and brittle materials.


2007 ◽  
Vol 359-360 ◽  
pp. 274-278
Author(s):  
Li Hua Dong ◽  
Chun Hua Fan ◽  
Jian Huang ◽  
Hong Xia Luo

The application of hard and brittle materials become wider and wider because its self-characteristics. It is used widely in finish machining of products, such as memory record device, information products, precision instrument, etc. Traditional grinding-polishing methods have not suited for precision machining requirements of hard and brittle materials. Carbide and ceramic are chosen as workpiece. Diamond polishing film is chosen as polishing tool. Polishing experiments are done by using self-made film polishing machine with high speed and cooling inside. Polishing mechanism and polishing technology of what polishing film polishes hard and brittle materials will be studied by changing polishing speed and diamond grain size and so on. The experimental study of wear shape of gringding grain, desquamation process of grain and surface quality of workpiece will be done in this paper so that the reasonable technology of polishing hard and brittle materials with high productivity is obtained. It enrich and perfect the ultra-precision machining theory. A new method of ultra-precision lapping and polishing of hard and brittle materials is provided.


2008 ◽  
Vol 368-372 ◽  
pp. 943-946
Author(s):  
Si Young Beck ◽  
Jung Won Lee ◽  
Myeong Woo Cho ◽  
Dong Sam Park ◽  
Ho Su Jang ◽  
...  

In this study, micro patterns were formed on the developed AlN-hBN composites using powder blasting techniques, which have been considered as one of the most appropriate micro machining methods for hard and brittle materials such as ceramics. To achieve the objective, first, material properties of the developed AlN-hBN composites were evaluated according to the variation of h-BN contents. And, a series of required experiments were performed, and the results were analyzed. As the results, it was investigated that the machiniability of the developed AlN-hBN composites increased with the increase of the h-BN contents in the composites. From the experimental results, it was possible to determine optimum blasting conditions for micro pattern making on the developed AlN-hBN composites.


Author(s):  
Chandra Nath ◽  
Mustafizur Rahman ◽  
Ken Soon Neo

In recent years, the ultrasonic elliptical vibration cutting (UEVC) technique has been found to be an efficient method for the ultraprecision machining of hard and brittle materials. During the machining at a given nominal depth of cut (DOC), the UEVC technique, because of its inherent mechanism, effectively reduces the thickness of cut (TOC) of the workpiece material through overlapping vibration cycles. For the ductile machining of hard and brittle materials, this TOC plays a critical role. However, the relationships between the nominal DOC, the TOC, and the relevant machining parameters have not yet been studied. In this study, the role playing machining parameters for the TOC are firstly investigated and then theoretical relations are developed for predicting the maximum TOC (TOCm) with respect to the relevant machining parameters. It is found that four machining parameters, namely, workpiece cutting speed, tool vibration frequency, and tangential and thrust directional vibration amplitudes, influence the TOCm. If the speed ratio (ratio of the workpiece cutting speed to the maximum tool vibration speed in the tangential direction) is within a critical value 0.12837, then a reduced TOCm can be obtained. It is also realized that if the TOCm can be kept lower than the critical DOC (DOCcr), then ductile finishing of brittle materials can be achieved. The above phenomenon has been substantiated by experimental findings while machining a hard and brittle material, sintered tungsten carbide. The findings suggest that the same concept can be applied for the ductile cutting of other hard and brittle materials.


Sign in / Sign up

Export Citation Format

Share Document