Research on Enhanced of Mine-Underground Picture

2012 ◽  
Vol 490-495 ◽  
pp. 548-552
Author(s):  
Meng Ling Zhao ◽  
Min Xia Jiang

Because of the based on S3C6410 Field information recorder mine- underground non-uniform illumination and mine- underground non-uniform illumination that a large of noise collected and transferred,image is low contrast ,dim and dark. Based on the theory of Donoho's wavelet threshold denoising, several typical wavelet threshold denoising methods are compared.the best denoising effect of peak signal to noise ratio is obtained. The image enhancement method that combination of the adaptive thresholding denoising and histogram equalization is proposed. The experiment result shows that the method has a good denoising performance, which removed the readout noise of CCD Camera,at the same time, image quality is improved .So the wavelet enhancement in image processing of mine- underground can improve image quality.

2014 ◽  
Vol 2 (2) ◽  
pp. 47-58
Author(s):  
Ismail Sh. Baqer

A two Level Image Quality enhancement is proposed in this paper. In the first level, Dualistic Sub-Image Histogram Equalization DSIHE method decomposes the original image into two sub-images based on median of original images. The second level deals with spikes shaped noise that may appear in the image after processing. We presents three methods of image enhancement GHE, LHE and proposed DSIHE that improve the visual quality of images. A comparative calculations is being carried out on above mentioned techniques to examine objective and subjective image quality parameters e.g. Peak Signal-to-Noise Ratio PSNR values, entropy H and mean squared error MSE to measure the quality of gray scale enhanced images. For handling gray-level images, convenient Histogram Equalization methods e.g. GHE and LHE tend to change the mean brightness of an image to middle level of the gray-level range limiting their appropriateness for contrast enhancement in consumer electronics such as TV monitors. The DSIHE methods seem to overcome this disadvantage as they tend to preserve both, the brightness and contrast enhancement. Experimental results show that the proposed technique gives better results in terms of Discrete Entropy, Signal to Noise ratio and Mean Squared Error values than the Global and Local histogram-based equalization methods


2020 ◽  
Vol 4 (2) ◽  
pp. 53-60
Author(s):  
Latifah Listyalina ◽  
Yudianingsih Yudianingsih ◽  
Dhimas Arief Dharmawan

Image processing is a technical term useful for modifying images in various ways. In medicine, image processing has a vital role. One example of images in the medical world, namely retinal images, can be obtained from a fundus camera. The retina image is useful in the detection of diabetic retinopathy. In general, direct observation of diabetic retinopathy is conducted by a doctor on the retinal image. The weakness of this method is the slow handling of the disease. For this reason, a computer system is required to help doctors detect diabetes retinopathy quickly and accurately. This system involves a series of digital image processing techniques that can process retinal images into good quality images. In this research, a method to improve the quality of retinal images was designed by comparing the methods for adjusting histogram equalization, contrast stretching, and increasing brightness. The performance of the three methods was evaluated using Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), and Signal to Noise Ratio (SNR). Low MSE values and high PSNR and SNR values indicated that the image had good quality. The results of the study revealed that the image was the best to use, as evidenced by the lowest MSE values and the highest SNR and PSNR values compared to other techniques. It indicated that adaptive histogram equalization techniques could improve image quality while maintaining its information.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 570 ◽  
Author(s):  
Xuhui Ye ◽  
Gongping Wu ◽  
Le Huang ◽  
Fei Fan ◽  
Yongxiang Zhang

Inspection images of power transmission line provide vision interaction for the operator and the environmental perception for the cable inspection robot (CIR). However, inspection images are always contaminated by severe outdoor working conditions such as uneven illumination, low contrast, and speckle noise. Therefore, this paper proposes a novel method based on Retinex and fuzzy enhancement to improve the image quality of the inspection images. A modified multi-scale Retinex (MSR) is proposed to compensate the uneven illumination by processing the low frequency components after wavelet decomposition. Besides, a fuzzy enhancement method is proposed to perfect the edge information and improve contrast by processing the high frequency components. A noise reduction procedure based on soft threshold is used to avoid the noise amplification. Experiments on the self-built standard test dataset show that the algorithm can improve the image quality by 3–4 times. Compared with several other methods, the experimental results demonstrate that the proposed method can obtain better enhancement performance with more homogeneous illumination and higher contrast. Further research will focus on improving the real-time performance and parameter adaptation of the algorithm.


2016 ◽  
Vol 11 (1) ◽  
pp. 222 ◽  
Author(s):  
Alaa Ahmed Abbood ◽  
Mohammed Sabbih Hamoud Al-Tamimi ◽  
Sabine U. Peters ◽  
Ghazali Sulong

This paper presents a combination of enhancement techniques for fingerprint images affected by different type of noise. These techniques were applied to improve image quality and come up with an acceptable image contrast. The proposed method included five different enhancement techniques: Normalization, Histogram Equalization, Binarization, Skeletonization and Fusion. The Normalization process standardized the pixel intensity which facilitated the processing of subsequent image enhancement stages. Subsequently, the Histogram Equalization technique increased the contrast of the images. Furthermore, the Binarization and Skeletonization techniques were implemented to differentiate between the ridge and valley structures and to obtain one pixel-wide lines. Finally, the Fusion technique was used to merge the results of the Histogram Equalization process with the Skeletonization process to obtain the new high contrast images. The proposed method was tested in different quality images from National Institute of Standard and Technology (NIST) special database 14. The experimental results are very encouraging and the current enhancement method appeared to be effective by improving different quality images.


2020 ◽  
Vol 18 (12) ◽  
pp. 01-05
Author(s):  
Salim J. Attia

The study focuses on assessment of the quality of some image enhancement methods which were implemented on renal X-ray images. The enhancement methods included Imadjust, Histogram Equalization (HE) and Contrast Limited Adaptive Histogram Equalization (CLAHE). The images qualities were calculated to compare input images with output images from these three enhancement techniques. An eight renal x-ray images are collected to perform these methods. Generally, the x-ray images are lack of contrast and low in radiation dosage. This lack of image quality can be amended by enhancement process. Three quality image factors were done to assess the resulted images involved (Naturalness Image Quality Evaluator (NIQE), Perception based Image Quality Evaluator (PIQE) and Blind References Image Spatial Quality Evaluator (BRISQE)). The quality of images had been heightened by these methods to support the goals of diagnosis. The results of the chosen enhancement methods of collecting images reflected more qualified images than the original images. According to the results of the quality factors and the assessment of radiology experts, the CLAHE method was the best enhancement method.


2012 ◽  
Vol 468-471 ◽  
pp. 204-207
Author(s):  
Zhen Chong Wang ◽  
Yan Qin Zhao

For the low illumination and low contrast in the coal mine, images captured from the video monitor system sometimes are not so clear to help the related personal monitoring the production and safety of the mine. According to the special environment of coal mine, an image enhancement method was presented. In this method the impulse noise which is the mainly noise in the coal mine was first reduced with median filtering, then the low contrast and illumination was greatly improved with the improved adaptive histogram equalization. Experiments show that this method can improve the quality of images underground effectively.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Lei Zeng ◽  
Bin Yan ◽  
Weidong Wang

Cone beam computed tomography (CBCT) is a new detection method for 3D nondestructive testing of printed circuit boards (PCBs). However, the obtained 3D image of PCBs exhibits low contrast because of several factors, such as the occurrence of metal artifacts and beam hardening, during the process of CBCT imaging. Histogram equalization (HE) algorithms cannot effectively extend the gray difference between a substrate and a metal in 3D CT images of PCBs, and the reinforcing effects are insignificant. To address this shortcoming, this study proposes an image enhancement algorithm based on gray and its distance double-weighting HE. Considering the characteristics of 3D CT images of PCBs, the proposed algorithm uses gray and its distance double-weighting strategy to change the form of the original image histogram distribution, suppresses the grayscale of a nonmetallic substrate, and expands the grayscale of wires and other metals. The proposed algorithm also enhances the gray difference between a substrate and a metal and highlights metallic materials. The proposed algorithm can enhance the gray value of wires and other metals in 3D CT images of PCBs. It applies enhancement strategies of changing gray and its distance double-weighting mechanism to adapt to this particular purpose. The flexibility and advantages of the proposed algorithm are confirmed by analyses and experimental results.


Author(s):  
Jeevan K M ◽  
Anne Gowda A B ◽  
Padmaja Vijay Kumar

<p><span>The images are not always good enough to convey the proper information. The image may be very bright or very dark sometime or it may be low contrast or high contrast. Because of these reasons image enhancement plays important role in digital image processing. In this paper we proposed an image enhancement technique in which Gabor and median filtering is performed in wavelet domain and Adaptive Histogram Equalization is performed in spatial domain. Brightness and contrast are the two parameters used for analyzing the performance of the proposed method</span></p>


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3954 ◽  
Author(s):  
Qingqing Fu ◽  
Zhengbing Zhang ◽  
Mehmet Celenk ◽  
Aiping Wu

Enabled by piezoceramic transducers, ultrasonic logging images often suffer from low contrast and indistinct local details, which makes it difficult to analyze and interpret geologic features in the images. In this work, we propose a novel partially overlapped sub-block histogram-equalization (POSHE)-based optimum clip-limit contrast enhancement (POSHEOC) method to highlight the local details hidden in ultrasonic well logging images obtained through piezoceramic transducers. The proposed algorithm introduces the idea of contrast-limited enhancement to modify the cumulative distribution functions of the POSHE and build a new quality evaluation index considering the effects of the mean gradient and mean structural similarity. The new index is designed to obtain the optimal clip-limit value for histogram equalization of the sub-block. It makes the choice of the optimal clip-limit automatically according to the input image. Experimental results based on visual perceptual evaluation and quantitative measures demonstrate that the proposed method yields better quality in terms of enhancing the contrast, emphasizing the local details while preserving the brightness and restricting the excessive enhancement compared with the other seven histogram equalization-based techniques from the literature. This study provides a feasible and effective method to enhance ultrasonic logging images obtained through piezoceramic transducers and is significant for the interpretation of actual ultrasonic logging data.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jingchun Zhou ◽  
Dehuan Zhang ◽  
Weishi Zhang

To solve the color cast and low contrast of underwater images caused by the effects of light absorption and scattering, we propose a novel underwater image enhancement method via bi-interval histogram equalization. The proposed method consists of three main parts: color correction, contrast enhancement, and multiscale fusion. First, the color cast is eliminated by automatic white balancing. Then, homomorphic filtering is adopted to decompose the image into high-frequency information and low-frequency information, the high-frequency information is enhanced by the gradient field bi-interval equalization which enhances the contrast and details of the image, and the low-frequency information is disposed via gamma correction for adjusting the exposure. Finally, we adopt a multiscale fusion strategy to fuse the high-frequency information, high-frequency after bi-interval equalization, and low-frequency information based on contrast, saturation, and exposure. Qualitative and quantitative performance evaluations demonstrate that the proposed method can effectively enhance the details and global contrast of the image and achieve better exposedness of the dark areas, which outperforms several state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document