Simulation Research on Acoustic Emission Signal of Tank Corrosion

2012 ◽  
Vol 503-504 ◽  
pp. 727-730
Author(s):  
Yang Yu ◽  
Yang Yu

This paper studies the cylindrical acoustic emission signal generation, propagation and attenuation. Acoustic emission signal is a form of elastic waves and mechanical waves also. The large finite element physics simulation software COMSOL is used to simulate the propagation of acoustic emission signals coursed by the oil tank bottom corrosion. Simulation is divided into two parts,they are separately two-dimensional simulation and three-dimensional simulation. The bottom part of oil tank is two-dimensional simulation and the entire tank is three-dimensional simulation. Two-dimensional simulation is achieved in different situations. Strength of point source are the same in different positions, and the same point source position has different intensity. Acoustic emission wave propagation has a greater relationship with the media of dissemination, the point source position and the different interfaces.

2020 ◽  
pp. 61-64
Author(s):  
Yu.G. Kabaldin ◽  
A.A. Khlybov ◽  
M.S. Anosov ◽  
D.A. Shatagin

The study of metals in impact bending and indentation is considered. A bench is developed for assessing the character of failure on the example of 45 steel at low temperatures using the classification of acoustic emission signal pulses and a trained artificial neural network. The results of fractographic studies of samples on impact bending correlate well with the results of pulse recognition in the acoustic emission signal. Keywords acoustic emission, classification, artificial neural network, low temperature, character of failure, hardness. [email protected]


2013 ◽  
Vol 791-793 ◽  
pp. 1436-1440
Author(s):  
Ling Hang Yang

With the development of computer hardware and software technology, virtual reality technology of computer has been widely used in various fields. Virtual teaching process is one of the main applications of virtual reality computer technology. Tennis is one of the most common sports. Tennis process mainly includes the process of catching a ball, serving a ball and hitting a ball. Virtual process of tennis system must establish an accurate numerical simulation model to calculate the mechanical impedance during the arm movement of human. According to this, it builds a model of the mechanical impedance of human arm in tennis virtual system using three-dimensional simulation software in this paper and gets the curve of mechanical impedance through the simulation. Finally, the article compares calculation results with the theoretical results and concludes that the theoretical results and simulation results are basically consistent which provide a theoretical reference for the design of the development of virtual system for the human.


1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


Sign in / Sign up

Export Citation Format

Share Document