Analysis of the Spillway Lining Cracks of Shuangquan Reservoir

2012 ◽  
Vol 511 ◽  
pp. 163-166
Author(s):  
Liang Ming Hu ◽  
Ting Cao ◽  
Yi Zhi Li

The main causes of the spillway lining cracks of Shuangquan reservoir are temperature difference and shrinkage of concrete. Through the analysis of the causes of the cracks, the maximum tensile stress formula and reasonable expansion joint distance formula of the influence of bedrock on spillway were established under the combined action of decrease of temperature and shrinkage. Taking an engineering project for example, it is proved that the calculated results using these formulas are matched with the measured data basically, which can provide design basis for controlling the cracks of reinforced concrete lining in similar project.

2021 ◽  
Vol 42 ◽  
pp. 102498
Author(s):  
Zongping Chen ◽  
Linlin Mo ◽  
Shengxin Li ◽  
Yuhan Liang ◽  
Dingyi Xu

2015 ◽  
Vol 744-746 ◽  
pp. 803-806 ◽  
Author(s):  
Xiao Lei ◽  
Yue Yao ◽  
Shi Cao ◽  
Zhi Gang Guo

Destruction of bridge expanded joint is a serious problem for concrete bridge. Based on 5 years measured data, the temperature in the different positions of the concrete box girder was systemically analyzed to illuminate the cause of the bridge expanded joint damage. A method for predicting the extremum value of the temperature difference of concrete girder was proposed by use of the extrema analysis and curve fitting based on the temperature in the different positions of the concrete box girder. The relationship is quite useful in estimating the destruction of bridge expanded joint by effective temperature difference in concrete box-girder.


2010 ◽  
Vol 163-167 ◽  
pp. 2267-2273 ◽  
Author(s):  
Hong Ying Dong ◽  
Wan Lin Cao ◽  
Jian Wei Zhang

Two 1/6 scale core walls, including one RC core wall with steel tube-reinforced concrete columns and concealed steel trusses and one conventional RC core wall, were tested under eccentric horizontal cyclic loading. The load-capacity, ductility, hysteresis characteristics, stiffness, stiffness deterioration process, energy dissipation and damage characteristics of the two specimens were compared and discussed in this paper. It shows that the seismic performance of the RC core walls under combined action could be improved by setting the concealed steel trusses in the walls and using the steel tube-reinforced concrete columns as the boundary elements.


2006 ◽  
Vol 512 ◽  
pp. 55-60 ◽  
Author(s):  
Mao Qiu Wang ◽  
Eiji Akiyama ◽  
Kaneaki Tsuzaki

We examine the hydrogen embrittlement susceptibility of a high-strength AISI 4135 steel by means of a slow strain-rate test (SSRT) using notched round bar specimens. Hydrogen was introduced into the specimens by electrochemical charging and its content was measured by thermal desorption spectrometry (TDS). It was found that the maximum tensile stress decreased in a power law manner with increasing diffusible hydrogen content. Finite element method (FEM) calculations demonstrated that the peak value of the maximum principal stress and the peak value of the locally accumulated hydrogen concentration at the maximum tensile stress were in good agreement with one power law relationship for the specimens with different stress concentration factors.


Author(s):  
Ajay Garg

Abstract In high pressure applications, rectangular blocks of steel are used instead of cylinders as pressure vessels. Bores are drilled in these blocks for fluid flow. Intersecting bores with axes normal to each other and of almost equal diameters, produce stresses which can be many times higher than the internal pressure. Experimental results for the magnitude of maximum tensile stress along the intersection contour were available. A parametric finite element model simulated the experimental set up, followed by correlation between finite element analysis and experimental results. Finally, empirical methods are applied to generate models for the maximum tensile stress σ11 at cross bores of open and close ended blocks. Results from finite element analysis and empirical methods are further matched. Design optimization of cross bores is discussed.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5294
Author(s):  
Bangyi Liu ◽  
Yang Zhou ◽  
Linhao Gu ◽  
Xiaoming Huang

Uneven support as result of voids beneath concrete slabs can lead to high tensile stresses at the corner of the slab and eventually cause many forms of damage, such as cracking or faulting. Three-dimensional (3D) finite element models of the concrete pavement with void are presented. Mesh convergence analysis was used to determine the element type and mesh size in the model. The accuracy of the model is verified by comparing with the calculation results of the code design standards in China. The reliability of the model is verified by field measurement. The analysis shows that the stresses are more affected at the corner of the slab than at the edge. Impact of void size and void depth at the slab corner on the slab stress are similar, which result in the change of the position of the maximum tensile stress. The maximum tensile stresses do not increase with the increase in the void size for relatively small void size. The maximum tensile stress increases rapidly with the enlargement in the void size when the size is ≥0.4 m. The increments of maximum tensile stress can reach 183.7% when the void size is 1.0 m. The increase in slab thickness can effectively reduce maximum tensile stress. A function is established to calculate the maximum tensile stress of the concrete slab. The function takes into account the void size, the slab thickness and the vehicle load. The reliability of the function was verified by comparing the error between the calculated and simulated results.


2019 ◽  
Vol 968 ◽  
pp. 234-239
Author(s):  
Talyat Azizov ◽  
Oleksii Melnik ◽  
Oleksandr Myza

The results of experimental studies of combined beams consisting of a stone part, reinforced with side reinforced concrete plates are given. Experimentally shown the viability of the proposed structures. The conditions for ensuring the combined action of a stone beam and a reinforced concrete plate are given. Cases are shown when one-sided plates can be used and when double-sided reinforced concrete plates can be used. A comparison of experimental data with the data calculated by the authors developed methods is given. A good agreement between theoretical and calculated data is shown.


Sign in / Sign up

Export Citation Format

Share Document