Energy-Saving Design of Rural Residential Building in Cold Region

2012 ◽  
Vol 512-515 ◽  
pp. 2740-2743
Author(s):  
Xue Ping Li ◽  
Zeng Feng Yan

There are serious energy-saving problems in cold region of rural residential buildings. On one hand, it needs the higher levels energy because of the particular climatic conditions, on the other hand, people in cold regions lack of energy-saving consciousness and technology. Through analyzing the rural residential building status and existing energy-saving problems in cold region of China, the author discussed and summarized the energy-saving design methods of rural residential building in cold region from three aspects, including the energy-saving of residential building size design, the energy-saving of building envelope structure design, and use of renewable energy. The research provides a reference for promoting socialism new rural reconstruction in China.

2013 ◽  
Vol 361-363 ◽  
pp. 235-238
Author(s):  
Chen Lin ◽  
Qiu Xia Wang ◽  
Xiao Tong Peng

The steel residential building has been widely used for its good seismic performances. In order to study the energy-saving behavior of the existing steel residential building, an on-site test on envelope structure of a typical steel building in cold region is conducted. Based on that, a simplified numerical model is established in which dynamic energy theories, solar radiations and indoor thermal disturbances are considered. The model is verified through testing data. Parameter analyses including 6 series sum up to 38 models are carried out on 6 main influential factors. The results show that improving thermal behavior of building envelope, adopting flexible sunshade schemes in different seasons, using even and simple building configuration and adopting different window-wall ratios for windows with different orientation are effective ways to decrease the energy consumption of buildings. The thermal design recommendations for steel residential buildings are also produced.


2011 ◽  
Vol 280 ◽  
pp. 147-151 ◽  
Author(s):  
Hong Guo ◽  
Min Fang Su ◽  
Xiao Jun Jin

Based on the current energy consumption situation of existing masonry-concrete residential buildings in China, it discussed the main energy-saving renovation policies and technologies. Taking existing masonry-concrete residential building of Taiyuan city as a case, it analyzed its heat loss situations, energy-saving renovation design and reconstruction technologies of building envelope. It discussed energy-saving renovation effects. Energy efficiency and indoor thermal environment improved significantly after energy-saving renovation. The building life is extended.


2011 ◽  
Vol 243-249 ◽  
pp. 6938-6941
Author(s):  
Xiao Tong Peng ◽  
Chen Lin

An on-site test on envelope of a typical steel residential building in cold region is performed. The testing results provide evaluation bases for the energy-saving effects of the steel residential building. In order to evaluate the main factors that influence energy dissipation of the building and estimate the main energy dissipation positions, the heat transfer coefficient K of envelope and its actual energy consumption are calculated based on the testing data. The results indicate that the building envelope has good heat storage property and it could keep indoor thermal stability; the steel frames and windows have heat bridge effects. Through calculations of the energy consumption of envelope, it is showed that the tested building only meet the requirement of energy saving by 50%, instead of 65%; the external walls and windows are main energy dissipation parts. Finally the thermal design recommendations about steel residential buildings are proposed.


2012 ◽  
Vol 209-211 ◽  
pp. 1788-1791
Author(s):  
Xiao Tong Peng ◽  
Chen Lin ◽  
Li Li Shen

The composite steel structure combines the advantages of steel structures and concrete structures. In order to study the energy-saving behavior of the composite steel structure, a thermal testing on a typical composite steel structure residential in cold region is performed. The energy consumption performances of all components of the residential are evaluated; the heat transfer coefficient K for envelope structure is obtained using the testing data and then the K value is compared with the current specification. The results show that energy-saving standard of the testing residential could not meet the requirements of code. Finally the existing problems and solutions for the composite steel residential buildings are produced.


2013 ◽  
Vol 291-294 ◽  
pp. 976-979
Author(s):  
Hui Xing Li ◽  
Wei Wang ◽  
Guo Hui Feng

Green residential building is energy conservation, environmental protection, healthy and comfortable and stress efficiency. Green building respects the local natural and humanities, climate. Adjust measures to local conditions, use local materials, so there is no definite construction patterns and rules. In this paper a green residential buildings from Shenyang, focus on the analysis of the well insulated building envelope, radiant floor heating system with control system, solar hot water system in the building. At the same time, analysis of the energy saving technology can reduce energy consumption and CO2 emissions compare with "Residential building energy saving design standards "at Liaoning area. The project gives some experience to other designers in the process of green buildings design and promotes it constructed in the northeastern regions.


2014 ◽  
Vol 1004-1005 ◽  
pp. 1565-1569
Author(s):  
Yu Ze Tian ◽  
Yang Yu

This paper introduces the present situation of existing residential building energy saving reconstruction of Anshan area, the result of the analysis is that the renovation of retaining structure is the key of the reconstruction of existing residential buildings of Anshan. Exterior wall area ratio of the total area of the building envelope accounts for quite large, so transformation of exterior wall is the key. Energy saving wall approach divided into external wall insulation and exterior insulation. Analysis of energy-saving measures by the external wall insulation, and the external wall of a residential district in Anshan city and analysis of thermal insulation and energy saving renovation case, better energy-saving effect, energy saving measures of external economy more external insulation, the region has provided the reference and basis transformation of external wall energy-saving residence building.


Author(s):  
Erik Schmerse ◽  
Charles Ikutegbe ◽  
Amar Auckaili ◽  
Mohammed Farid

A characteristic feature of lightweight constructions is their low thermal mass which causes high internal temperature fluctuations that require high heating and cooling demand throughout the year. Phase Change Materials (PCMs) is effective in providing thermal inertia to low thermal mass buildings. The aim of this paper is to analyse the thermal behaviour of two proposed lightweight buildings designed for homeless people and to investigate the potential benefit achievable through the use of different types of PCM in the temperate climatic conditions of Christchurch, New Zealand. For this purpose, over 300 numerical simulations have been conducted using the simulation software DesignBuilder®. The bulk of the simulations were carried out under the assumption that the whole opaque building envelope is equipped with PCM. The results showed significant energy saving and comfort enhancement through the application of PCMs. Thereby, annual energy saving of over 50 % was reached for some of the PCMs considered. Additionally, the effectiveness of single, PCM-equipped structure components was investigated and substantial benefits between 19 and 27 % annual energy saving were achieved. However, occupant behaviour in terms of ventilation habits, occupancy of zones etc. remains one of the biggest challenges in any simulation work due to insufficient data.


2013 ◽  
Vol 409-410 ◽  
pp. 526-530
Author(s):  
Min Fang Su ◽  
Hong Guo

Based on the structure feature and energy consumption situation of high-rise reinforced concrete residential buildings which built in end of last century, it discussed the main energy-saving renovation technologies and methods. Demonstrating high-rise reinforced concrete residential building of Taiyuan as a case, it analyzed its heat loss problems and defects of original design. Energy-saving renovation plan proposed and put reconstruction technologies of building envelope and heating system in practice. It discusses energy-saving renovation effects, energy efficiency. Indoor thermal environment improved significantly after energy-saving renovation on building envelope and heat system.


2014 ◽  
Vol 953-954 ◽  
pp. 1481-1487
Author(s):  
Liu Jin

Windows energy saving design of residential buildings has increasingly got the attention of people. Through a large number of surveys and analysis of residential buildings in Chongqing and consumers personal experience, the author finds problems and deficiency, and then proposes principles of residential buildings sun shading reconstruction in Chongqing city. Taking the high-rise residential building of one university in Chongqing as reconstruction sample, selecting a specific time period, the author recalculates sun shading coefficient with and without sun shading by using Ecotect software to do simulation analysis. Finally, the reasonable reconstruction design pattern is put forward through cases. Keywords: Buildings Sun Shading, Sun Shading Reconstruction, Energy Saving


2011 ◽  
Vol 71-78 ◽  
pp. 655-658
Author(s):  
Rong Qin

There are six basic control items, land saving, energy saving, water saving, material saving, indoor environment and operation, among which, only material saving are related to structure design. We followed the green building design concept and the control items list in those standards during structure design of one of the residential area in Sino-Singapore Tianjin Eco-city, which consist of 15~18-story residential building connected to a large underground garage, as is shown below.


Sign in / Sign up

Export Citation Format

Share Document