Research on Multi-Objective Transmission Planning in Electricity Markets

2012 ◽  
Vol 516-517 ◽  
pp. 1429-1432
Author(s):  
Yang Liu ◽  
Xu Liu ◽  
Feng Xian Cui ◽  
Liang Gao

Abstract. Transmission planning is a complex optimization problem with multiple deciding variables and restrictions. The mathematical model is non-linear, discrete, multi-objective and dynamic. It becomes complicated as the system grows. So the algorithm adopted affects the results of planning directly. In this paper, a fast non-dominated sorting genetic algorithm (NSGA-II) is employed. The results indicate that NSGA-II has some advantages compared to the traditional genetic algorithms. In transmission planning, NSGA-II is feasible, flexible and effective.

2013 ◽  
Vol 316-317 ◽  
pp. 132-135
Author(s):  
Xu Liu ◽  
Cui Lian Tang

Transmission planning is a complex optimization problem with multiple deciding variables and restrictions. The mathematical model is non-linear, discrete, multi-objective and dynamic. It becomes complicated as the system grows. So the algorithm adopted affects the results of planning directly. In this paper, a fast non-dominated sorting genetic algorithm (NSGA-II) is employed. The results indicate that NSGA-II has some advantages compared to the traditional genetic algorithms. In transmission planning, NSGA-II is feasible, flexible and effective.


2013 ◽  
Vol 732-733 ◽  
pp. 402-406
Author(s):  
Duan Yi Wang

The weight minimum and drive efficiency maxima1 of screw conveyor were considered as double optimizing objects in this paper. The mathematical model of the screw conveyor has been established based on the theory of the machine design, and the genetic algorithm was adopted to solving the multi-objective optimization problem. The results show that the mass of spiral shaft reduces 13.6 percent, and the drive efficiency increases 6.4 percent because of the optimal design based on genetic algorithm. The genetic algorithm application on the screw conveyor optimized design can provided the basis for designing the screw conveyor.


2015 ◽  
Vol 789-790 ◽  
pp. 723-734
Author(s):  
Xing Guo Lu ◽  
Ming Liu ◽  
Min Xiu Kong

This work tends to deal with the multi-objective dynamic optimization problem of a three translational degrees of freedom parallel robot. Two global dynamic indices are proposed as the objective functions for the dynamic optimization: the index of dynamic dexterity, the index describing the dynamic fluctuation effects. The length of the linkages and the circumradius of the platforms were chosen as the design variables. A multi-objective optimal design problem, including constrains on the actuating and passive joint angle limits and geometrical interference is then formulated to find the Pareto solutions for the robot in a desired workspace. The Non-dominated Sorting Genetic Algorithm (NSGA-II) is adopted to solve the constrained nonlinear multi-objective optimization problem. The simulation results obtained shows that the robot can achieve better dynamic dexterity and less dynamic fluctuation simultaneously after the optimization.


2021 ◽  
Vol 8 (1-2) ◽  
pp. 58-65
Author(s):  
Filip Dodigović ◽  
Krešo Ivandić ◽  
Jasmin Jug ◽  
Krešimir Agnezović

The paper investigates the possibility of applying the genetic algorithm NSGA-II to optimize a reinforced concrete retaining wall embedded in saturated silty sand. Multi-objective constrained optimization was performed to minimize the cost, while maximizing the overdesign factors (ODF) against sliding, overturning, and soil bearing resistance. For a given change in ground elevation of 5.0 m, the width of the foundation and the embedment depth were optimized. Comparing the algorithm's performance in the cases of two-objective and three objective optimizations showed that the number of objectives significantly affects its convergence rate. It was also found that the verification of the wall against the sliding yields a lower ODF value than verifications against overturning and soil bearing capacity. Because of that, it is possible to exclude them from the definition of optimization problem. The application of the NSGA-II algorithm has been demonstrated to be an effective tool for determining the set of optimal retaining wall designs.


Author(s):  
A. K. Nandi ◽  
K. Deb

The primary objective in designing appropriate particle reinforced polyurethane composite which will be used as a mould material in soft tooling process is to minimize the cycle time of soft tooling process by providing faster cooling rate during solidification of wax/plastic component. This chapter exemplifies an effective approach to design particle reinforced mould materials by solving the inherent multi-objective optimization problem associated with soft tooling process using evolutionary algorithms. In this chapter, first a brief introduction of multi-objective optimization problem with the key issues is presented. Then, after a short overview on the working procedure of genetic algorithm, a well- established multi-objective evolutionary algorithm, namely NSGA-II along with various performance metrics are described. The inherent multi-objective problem in soft tooling process is demonstrated and subsequently solved using an elitist non-dominated sorting genetic algorithm, NSGA-II. Multi-objective optimization results obtained using NSGA-II are analyzed statistically and validated with real industrial application. Finally the fundamental results of this approach are summarized and various perspectives to the industries along with scopes for future research work are pointed out.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
H. S. Wang ◽  
C. H. Tu ◽  
K. H. Chen

Through the global supply chain (SC), numerous firms participate in vertically integrated manufacturing, and industrial collaboration and cooperation is the norm. SC management activities, such as delivery time, quality, and defect rate, are characterized by uncertainty. Based on all of the aforementioned factors, this study established a multiobjective mathematical model, integrating the guided genetic algorithm (Guided-GA) and the nondominated sorting genetic algorithm II (NSGA-II), developed in previous studies, to improve the mechanisms of the algorithms, thereby increasing the efficiency of the model and quality of the solution. The mathematical model was used to address the problems of supplier selection, assembly sequence planning, assembly line balancing, and defect rate, to enable suppliers to respond rapidly to sales orders. The model was empirically tested using a case study, showing that it is suitable for assisting decision makers in planning production and conducting SS according to sales orders, enabling production activities to achieve maximum efficiency and the competitiveness of firms to improve.


2014 ◽  
Vol 945-949 ◽  
pp. 473-477
Author(s):  
You Jian Wang ◽  
Guang Zhang

The design of engine valve spring generally belongs to multi-objective optimum design. The traditional trying means and the graphical methods are difficult to solve the multi-objective optimization problem, and the traditional multi-objective algorithms have certain defects. The elitist non-dominated sorting genetic algorithm (NSGA-II) is an excellent multi-objective algorithm, which is widely used to solve problems of multi-objective optimization. This method can improve the design quality and efficiency, and it has much more engineering practical value.


Author(s):  
A. K. Nandi ◽  
K. Deb

The primary objective in designing appropriate particle reinforced polyurethane composite which will be used as a mould material in soft tooling process is to minimize the cycle time of soft tooling process by providing faster cooling rate during solidification of wax/plastic component. This chapter exemplifies an effective approach to design particle reinforced mould materials by solving the inherent multi-objective optimization problem associated with soft tooling process using evolutionary algorithms. In this chapter, first a brief introduction of multi-objective optimization problem with the key issues is presented. Then, after a short overview on the working procedure of genetic algorithm, a well- established multi-objective evolutionary algorithm, namely NSGA-II along with various performance metrics are described. The inherent multi-objective problem in soft tooling process is demonstrated and subsequently solved using an elitist non-dominated sorting genetic algorithm, NSGA-II. Multi-objective optimization results obtained using NSGA-II are analyzed statistically and validated with real industrial application. Finally the fundamental results of this approach are summarized and various perspectives to the industries along with scopes for future research work are pointed out.


2018 ◽  
Vol 26 (4) ◽  
pp. 367-377 ◽  
Author(s):  
Yu-ling Jiao ◽  
Xiao-cui Xing ◽  
Peng Zhang ◽  
Liang-cheng Xu ◽  
Xin-Ran Liu

Aiming at the requirement of working efficiency and security of automated warehouse and taking the operation time of outbound–inbound, the equivalent center of gravity of overall shelf and the degree of relative accumulation of related products as the multi-objective functions, the mathematical model is constructed for multi-objective storage location allocation optimization. According to the simple weighted genetic algorithm, it is easily prone to the problem of immature convergence when solving multi-objective programming problems. So, the multi-population genetic algorithm is proposed to solve the mathematical model of storage location allocation optimization. Combining with the experiment data of toy car assembly and automated warehouse, the results of the automated warehouse storage location allocation are obtained. FlexSim dynamic simulation model is established based on the storage location allocation solution, the physical parameters of automated warehouse and the experimental requirements plan of vehicle model assembly. The operation effect of the model and the utilization rate of the equipment are analyzed. The result of multi-population genetic algorithm is more reasonable and effective. It is proved that the result of multi-population genetic algorithm is superior to the result of simple weighted genetic algorithm, which provides an effective method for storage location allocation optimization and outbound–inbound dynamic simulation.


Author(s):  
Yu Shi ◽  
Rolf D. Reitz

In previous study [1] the Non-dominated Sorting Genetic Algorithm II (NSGA II) [2] performed better than other popular Multi-Objective Genetic Algorithms (MOGA) in engine optimization that sought optimal combinations of the piston bowl geometry, spray targeting, and swirl ratio. NSGA II is further studied in this paper using different niching strategies that are applied to the objective-space and design-space, which diversify the optimal objectives and design parameters accordingly. Convergence and diversity metrics are defined to assess the performance of NSGA II using different niching strategies. It was found that use of the design niching achieved more diversified results with respect to design parameters, as expected. Regression was then conducted on the design datasets that were obtained from the optimizations with two niching strategies. Four regression methods, including K-nearest neighbors (KN), Kriging (KR), Neural Networks (NN), and Radial Basis Functions (RBF), were compared. The results showed that the dataset obtained from optimization with objective niching provided a more fitted learning space for the regression methods. The KN, KR, outperformed the other two methods with respect to the prediction accuracy. Furthermore, a log transformation to the objective-space improved the prediction accuracy for the KN, KR, and NN methods but not the RBF method. The results indicate that it is appropriate to use a regression tool to partly replace the actual CFD evaluation tool in engine optimization designs using the genetic algorithm. This hybrid mode saves computational resources (processors) without losing optimal accuracy. A Design of Experiment (DoE) method (the Optimal Latin Hypercube method) was also used to generate a dataset for the regression processes. However, the predicted results were much less reliable than results that were learned using the dynamically increasing datasets from the NSGA II generations. Applying the dynamical learning strategy during the optimization processes allows computationally expensive CFD evaluations to be partly replaced by evaluations using the regression techniques. The present study demonstrates the feasibility of applying the hybrid mode to engine optimization problems, and the conclusions can also extend to other optimization studies (numerical or experimental) that feature time-consuming evaluations and have highly non-linear objective-spaces.


Sign in / Sign up

Export Citation Format

Share Document