Numerical Predication of Two-Phase Flow in Mixing Chamber of the Quick-Contact Cyclone Reactor

2012 ◽  
Vol 516-517 ◽  
pp. 945-948
Author(s):  
Yu Chun Zhang ◽  
Zhen Bo Wang ◽  
You Hai Jin

Gas-solid two-phase flow of the quick-contact cyclone reactor used in FCC was simulated with the multi fluid Eulerian model, especially the velocity field and volume fraction of solid in the mixing chamber was researched. The results show that flow pattern and catalyst particles concentration are non-uniform in the direction of axial, radial and tangential. The tangential gas admission increases turbulent intensity, it has a great benefit on spreading the catalyst particles uniformly, enhancing gas-solid contact effect. This work could offer a base for the structure optimization of the quick-contact reactor.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3180
Author(s):  
Maciej Masiukiewicz ◽  
Stanisław Anweiler

The drive to increase the efficiency of processes based on two-phase flow demands the better precision and selection of boundary conditions in the process’ control. The two-phase flow pattern affects the phenomena of momentum, heat, and mass transfer. It becomes necessary to shift from its qualitative to quantitative evaluation. The description of the stationary structure has long been used in structural studies applied to metals and alloys. The description of a gas–liquid two-phase mixture is difficult because it changes in time and space. This paper presents a study of the precise determination of two-phase flow patterns based on stereological parameters analysis. The research area is shown against the flow map proposed by other researchers. The experiment was taken in the thin clear channel with dimensions of W = 50 × H = 1200 × T = 5 mm. The test method is based on the visualization of a two-phase air–water adiabatic flow pattern in the rectangular channel where superficial air velocities ranging from 0.006 to 0.044 m/s and the superficial water velocity ranged from 0.011 to 1.111 m/s. A high-speed camera was used for visualization. Images were analyzed with the use of stereological techniques. The study included the classification of structures according to generally accepted two-phase flow regime nomenclature for upwards co-current gas–liquid flow in a vertical rectangular channel. The result of the research was the determination of the stereological parameters’ changes with reference to the two-phase mixture flow hydrodynamics. The results were presented as waveform fluctuations in the values of stereological factors such as the volume fraction VV, interfacial surface SV, number of objects NV, mean chord l′m and the free distance λ. The description of how these parameters change with changes in phase fluxes is also presented. These waveforms help to distinguish the transient flow regimes, which allow for the automatic adjustment of the process stability. The authors found templates of the stereological parameters’ dependencies for flow pattern recognition. The research demonstrates wide possibilities of stereological methods’ application for the analysis of the two-phase gas–liquid process. The stereological model of two-phase pattern control enables the identification of process disorders.


1992 ◽  
Vol 114 (1) ◽  
pp. 14-30 ◽  
Author(s):  
E. F. Caetano ◽  
O. Shoham ◽  
J. P. Brill

Mechanistic models have been developed for each of the existing two-phase flow patterns in an annulus, namely bubble flow, dispersed bubble flow, slug flow, and annular flow. These models are based on two-phase flow physical phenomena and incorporate annulus characteristics such as casing and tubing diameters and degree of eccentricity. The models also apply the new predictive means for friction factor and Taylor bubble rise velocity presented in Part I. Given a set of flow conditions, the existing flow pattern in the system can be predicted. The developed models are applied next for predicting the flow behavior, including the average volumetric liquid holdup and the average total pressure gradient for the existing flow pattern. In general, good agreement was observed between the experimental data and model predictions.


Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


2007 ◽  
Vol 2 ◽  
pp. 25-32 ◽  
Author(s):  
Toru SUKAWA ◽  
Tomoya HASEGAWA ◽  
Kenji YOSHIDA ◽  
Isao KATAOKA

Sign in / Sign up

Export Citation Format

Share Document