Simulation of Underground Water Inrush Spreading Based on Multiple-Phase LBM

2012 ◽  
Vol 532-533 ◽  
pp. 455-459
Author(s):  
Qiu Qin Lu ◽  
Guang Qiu Huang

In order to study behaviors of underground mine water inrush spreading, the multiple-phase LBM based on finite-volume particles and point-particles applied to create the LBM-Lagrange simulating model of underground water inrush spreading with silt. The simulation result shows that the model can get the visual information of water-sand inrush speed, water-sand pressure and distribution of water-sand phase. Therefore some effective alternatives can be made to control underground mine water inrush.

1996 ◽  
Vol 34 (10) ◽  
pp. 141-149 ◽  
Author(s):  
J. P. Maree ◽  
G. J. van Tonder ◽  
P. Millard ◽  
T. C. Erasmus

Traditionally acid mine water is neutralised with lime (Ca(OH)2). Limestone (CaCO3) is a cheaper alternative for such applications. This paper describes an investigation aimed at demonstrating that underground mine water can be neutralised with limestone in a fluidised-bed. The contact time required between the limestone and the acid water, chemical composition of water before and after treatment, and economic feasibility of the fluidised bed neutralisation process are determined. A pilot plant with a capacity of 10k1/h was operated continuously underground in a gold mine. The underground water could be neutralised effectively using the limestone process. The pH of the water was increased from less than 3 to more than 7, the alkalinity of the treated water was greater than 120 mg/l (as CaCO3) and the contact time required between mine water and limestone was less than 10 min (the exact contact time depends on the limestone surface area). Chemical savings of 56.4% can be achieved compared to neutralisation with lime.


2019 ◽  
Vol 19 (1) ◽  
pp. 9-20
Author(s):  
J. K. Obosu ◽  
J. S. Y. Kuma ◽  
W. K. Buah

The Tarkwa district is an important gold mining area in the Southwestern part of Ghana. The main source of potable water supply to the Tarkwa Nsuaem Municipality is from the Bonsa River treatment plant managed by the Ghana Water Company Limited (GWCL). The River is under threat from serious contamination by illegal mining ("galamsey") activities within its catchment area. Consequently, the amount of water supplied to the Municipality has not kept pace with its growing population due to increasing treatment cost and supply difficulties. The need to find alternative and sustainable sources of potable water supply to augment that from GWCL to the Municipality has become imperative. A large void volume created as a result of the abandoned underground mine operated by Gold Fields Ghana Limited (GFGL), after its closure in 1999 has flooded. This potential water resource is being pumped out daily, and wasted, sometimes spilling-over to low lying areas around the mine when allowed to reach its decant level. This study estimated the quantity of water in the Abontiakoon Vertical Shaft (AVS) which is part of the large underground void using survey production figures and post-closure void filling parameters resulting in 2.8 x 106 m3 and 2.9 x 106 m3 respectively. The rate of recharge to the underground water was also estimated to ascertain the sustainability of the void water should it be considered for use by employing the model of predicting rebound on “void filling” basis and average dewatering rate before closure at 2 535 m3/day and 2 618 m3/day respectively; indicating that recharge to the AVS reservoir is about 6 x 106 gal/day or 30% of current daily water supply deficit in the TNM. The estimated potential volume of mine water in storage in the entire Tarkwa underground void is 32 x106 m3. Two samples of the mine water were taken in November 2011 and February 2015 for quality analysis, in order to have a fair knowledge of the water quality parameters. The quality of the underground water was found to be potentially good, and not likely to cause any health threats, or water quality problems. Depth sampling is recommended to determine the chemical profile of the reservoir. Keywords: Reservoir, Municipality, Bonsa River, Contamination, Tarkwa


2018 ◽  
Vol 10 (2) ◽  
pp. 276-284 ◽  
Author(s):  
Gang Chen ◽  
Shiguang Xu ◽  
Chunxue Liu ◽  
Lei Lu ◽  
Liang Guo

Abstract Mine water inrush is one of the important factors threatening safe production in mines. The accurate understanding of the mine groundwater flow field can effectively reduce the hazards of mine water inrush. Numerical simulation is an important method to study the groundwater flow field. This paper numerically simulates the groundwater seepage field in the GaoSong ore field. In order to ensure the accuracy of the numerical model, the research team completed 3,724 field fissure measurements in the study area. The fracture measurement results were analyzed using the GEOFRAC method and the whole-area fracture network data were generated. On this basis, the rock mass permeability coefficient tensor of the aquifer in the study area was calculated. The tensor calculation results are used in the numerical model of groundwater flow. After calculation, the obtained numerical model can better represent the groundwater seepage field in the study area. In addition, we designed three different numerical models for calculation, mainly to explore the influence of the tensor assignment of permeability coefficient on the calculation results of water yield of the mine. The results showed that irrational fathom tensor assignment would cause a significant deviation in calculation results.


2016 ◽  
Vol 89 ◽  
pp. 231-239 ◽  
Author(s):  
Jiansong Wu ◽  
Shengdi Xu ◽  
Rui Zhou ◽  
Yueping Qin

2018 ◽  
Vol 38 (7) ◽  
pp. 0730002
Author(s):  
王亚 Wang Ya ◽  
周孟然 Zhou Mengran ◽  
陈瑞云 Chen Ruiyun ◽  
闫鹏程 Yan Pengcheng ◽  
胡锋 Hu Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document