Functionally Graded Plates under Thermal and Moisture Effects

2012 ◽  
Vol 535-537 ◽  
pp. 1382-1385
Author(s):  
Chang Yull Lee ◽  
Ji Hwan Kim

The postbucking behaviors of Functionally Graded Material (FGM) plate in hygrothermal environments are investigated. The material properties of FGM change continuously in the thickness direction according to the volume fractions of the materials. The formulations are based on the First-order Shear Deformation Theory (FSDT) and von Karman strain-displacement relations are applied. Governing equations are derived by using the principle of virtual work and numerical solutions are solved through a finite element method. Newton-Raphson technique is adopted to analyze the thermal postbuckling behavior of the model. Furthermore, moisture effects on the model are significantly appeared due to the increase of the volume fraction index of the materials.

2010 ◽  
Vol 123-125 ◽  
pp. 280-283
Author(s):  
Chang Yull Lee ◽  
Ji Hwan Kim

The post-buckling of the functionally graded composite plate under thermal environment with aerodynamic loading is studied. The structural model has three layers with ceramic, FGM and metal, respectively. The outer layers of the sandwich plate are different homogeneous and isotropic material properties for ceramic and metal. Whereas the core is FGM layer, material properties vary continuously from one interface to the other in the thickness direction according to a simple power law distribution in terms of the volume fractions. Governing equations are derived by using the principle of virtual work and numerical solutions are solved through a finite element method. The first-order shear deformation theory and von-Karman strain-displacement relations are based to derive governing equations of the plate. Aerodynamic effects are dealt by adopting nonlinear third-order piston theory for structural and aerodynamic nonlinearity. The Newton-Raphson iterative method applied for solving the nonlinear equations of the thermal post-buckling analysis


2021 ◽  
Vol 8 (4) ◽  
pp. 691-704
Author(s):  
M. Janane Allah ◽  
◽  
Y. Belaasilia ◽  
A. Timesli ◽  
A. El Haouzi ◽  
...  

In this work, an implicit algorithm is used for analyzing the free dynamic behavior of Functionally Graded Material (FGM) plates. The Third order Shear Deformation Theory (TSDT) is used to develop the proposed model. In this contribution, the formulation is written without any homogenization technique as the rule of mixture. The Hamilton principle is used to establish the resulting equations of motion. For spatial discretization based on Finite Element Method (FEM), a quadratic element with four and eight nodes is adopted using seven degrees of freedom per node. An implicit algorithm is used for solving the obtained problem. To study the accuracy and the performance of the proposed approach, we present comparisons with literature and laminate composite modeling results for vibration natural frequencies. Otherwise, we examine the influence of the exponent of the volume fraction which reacts the plates "P-FGM" and "S-FGM". In addition, we study the influence of the thickness on "E-FGM" plates.


Author(s):  
Le Kha Hoa ◽  
Pham Van Vinh ◽  
Nguyen Dinh Duc ◽  
Nguyen Thoi Trung ◽  
Le Truong Son ◽  
...  

A novel nonlocal shear deformation theory is established to investigate functionally graded nanoplates. The significant benefit of this theory is that it consists of only one unknown variable in its displacement formula and governing differential equation, but it can take into account both the quadratic distribution of the shear strains and stresses through the plate thickness as well as the small-scale effects on nanostructures. The numerical solutions of simply supported rectangular functionally graded material nanoplates are carried out by applying the Navier procedure. To indicate the accuracy and convergence of this theory, the present solutions have been compared with other published results. Furthermore, a deep parameter study is also carried out to exhibit the influence of some parameters on the response of the functionally graded material nanoplates.


2010 ◽  
Vol 19 (2) ◽  
pp. 096369351001900 ◽  
Author(s):  
F. Ebrahimi ◽  
H.A. Sepiani

In this study, a formulation for the free vibration and buckling of cylindrical shells made of functionally graded material (FGM) subjected to combined static and periodic axial loadings are presented. The properties are temperature dependent and graded in the thickness direction according to a volume fraction power law distribution. The analysis is based on two different methods of first-order shear deformation theory (FSDT) considering the transverse shear strains and the rotary inertias and the classical shell theory (CST). The results obtained show that the effect of transverse shear and rotary inertias on vibration and buckling of functionally graded cylindrical shells is dependent on the material composition, the temperature environment, the amplitude of static load, the deformation mode, and the shell geometry parameters.


2016 ◽  
Vol 28 (2) ◽  
pp. 272-289 ◽  
Author(s):  
Mohammadreza Saviz

A layer-wise finite element approach is adopted to analyse the hollow cylindrical shell made of functionally graded material with piezoelectric rings as sensor/actuator, under dynamic load. The mechanical properties of the substrate are regulated by volume fraction as a function of radial coordinate. The thickness of functionally graded material shell and piezo-rings is divided into mathematical sub-layers and then the general layer-wise laminate theory is formulated through introducing piecewise continuous approximations across the thickness, accounting for any discontinuity in derivatives of the displacement at the interface between the ring and cylinder. The virtual work statement including structural and electrical potential energies yields the three-dimensional governing equations which are reduced to two-dimensional differential equations, using layer-wise method. For axisymmetric case, the resulted equations are solved with one-dimensional finite element method in the axial direction. By assembling stiffness and mass matrices, the required stress and displacement continuities at each interface and between the two adjacent elements are forced. The results for free vibration and static loading are applied to study the convergence and verified by comparing them to solutions of similar existing problems. The induced deformation by piezoelectric actuators as well as the effect of rings on functionally graded material shell is investigated.


2016 ◽  
Vol 829 ◽  
pp. 90-94
Author(s):  
Seok Hyeon Kang ◽  
Ji Hwan Kim

In thermal environment, vibration behavior of Functionally Graded Materials (FGMs) plates is investigated, and the materials are developed with mixing ceramic and metal. Present study is based on the first-order shear deformation theory of plate. Then, mixture methods such as Power law (P-) and Sigmoid (S-) models are chosen. According to a volume fraction, the material properties are assumed to vary continuously through the thickness direction and to be temperature dependent properties. Further, thermal effects are considered as uniform temperature rise and one dimensional heat transfer. For the structure analysis, FEM is used to obtain the natural frequencies based on the virtual work principle.


2013 ◽  
Vol 05 (04) ◽  
pp. 1350041 ◽  
Author(s):  
M.N.A. GULSHAN TAJ ◽  
ANUPAM CHAKRABARTI

In the present study, an attempt has been made to present the Co finite element formulation based on third order shear deformation theory for buckling analysis of functionally graded material skew plate under thermo-mechanical environment. Here, prime emphasis has been given to study the influence of skew angle on the buckling behavior of functionally graded plate. Two dissimilar homogenization schemes, namely Mori–Tanaka scheme and Voigt rule of mixture are employed to sketch their influence for the interpretation of data. Temperature-dependent material properties of the constituents of the plate are considered to perform thermal analysis. Numerical examples are solved using different mixture of ceramic and metal plates to generate the new results and relative imperative conclusions are highlighted. The roles played by the different factors like loading condition, volume fraction index, skew angle, boundary condition, aspect ratio, thickness ratio and homogenization schemes on buckling behavior of the FGM skew plates are presented in the form of tables and figures.


2008 ◽  
Vol 08 (02) ◽  
pp. 203-229 ◽  
Author(s):  
SUNG-CHEON HAN ◽  
GILSON RESCOBER LOMBOY ◽  
KI-DU KIM

In this paper, we investigate the natural frequencies and buckling loads of functionally graded material (FGM) plates and shells, using a quasi-conforming shell element that accounts for the transverse shear strains and rotary inertia. The eigenvalues of the FGM plates and shells are calculated by varying the volume fraction of the ceramic and metallic constituents using a sigmoid function, but the Poisson ratios of the FGM plates and shells are assumed to be constant. The expressions for the membrane, bending and shear stiffness of FGM shell elements are more a complicated combination of material properties than a homogeneous element. In order to validate the finite element numerical solutions, the Navier solutions for rectangular plates based on the first order shear deformation theory are also presented. The present numerical solutions for composite and sigmoid FGM (S-FGM) plates and shells are verified by the Navier solutions and various examples of composite and FGM structures. The present results are in good agreement with the Navier theoretical solutions.


Author(s):  
S Parida ◽  
SC Mohanty

In the present article, a higher order shear deformation theory is used to develop a finite element model for the free vibration analysis of a rotating functionally graded material plate in the thermal environment. The model is based on an eight-noded isoparametric element with seven degrees-of-freedom per node. The material properties are temperature dependent and graded along its thickness according to a simple power law distribution in terms of volume fraction of the constituents. The general displacement equation provides C0 continuity, and the transverse shear strain undergoes parabolic variation through the thickness of the plate. Therefore, the shear correction factor is not used in this theory. The obtained results are compared with the published results in the literature to determine the accuracy of the method. The effects of various parameters like hub radius, rotation speed, aspect ratio, thickness ratio, volume fraction index, and temperature on the frequency of rotating plate are investigated.


Sign in / Sign up

Export Citation Format

Share Document