Solid-Liquid Coupling Mechanism Research in Seepage Field and Stress Field of Fractured Rock Mass

2012 ◽  
Vol 542-543 ◽  
pp. 1087-1090
Author(s):  
Hai Tao Mao ◽  
Xiao Ju Wang

In this article, we use the porosity to express the effective stress of rock mass, and get the equilibrium differential equation. on this basis, using equivalent continuum model and the finite element method to simulate the degree of coupling. In full consideration the interaction between groundwater and the rock framework and referring to the underground water solid coupling seepage flow mathematic model, based on finite element theory, we obtain the calculation method and the coupling method. These methods can real simulate groundwater seepage condition and have a great significance.

2019 ◽  
Vol 17 (04) ◽  
pp. 1950005 ◽  
Author(s):  
Zengguang Xu ◽  
Yang Liu ◽  
Yaping Wang ◽  
Junrui Chai ◽  
Yanlong Li

The coupling effect of seepage and temperature fields in fractured rock mass is a hot topic in the area of water conservancy, nuclear waste disposal and geothermal resources development. A coupling mathematical model of the seepage, flow temperature and rock mass temperature fields in the fracture network of rock mass is established based on the seepage and temperature interaction. A calculation program is developed and applied to calculate the seepage and temperature fields of the dam foundation of a water conservancy project. The interaction mechanism of the seepage, flow temperature and rock mass temperature fields is analyzed in this paper. Results show that the seepage field largely influences the temperature field, which can provide several suggestions for the deep underground disposal of nuclear waste, geothermal resources development and fractured rock mass in dam foundations. Considering the coupling effect of the seepage, flow temperature and rock mass temperature fields by the fracture network method is necessary.


2011 ◽  
Vol 382 ◽  
pp. 3-6
Author(s):  
Shu Guang Zhang ◽  
Yong Gang Yu

In order to research thermal conductivity of fracture rock, fluid-heat coupling test and simulation are studied. Empirical equation of thermal conductivity is obtained and conductivity factor is ensured by test data. Based on the fluid-heat coupling model of heat-transfer, temperature field distribution of fracture rock is described. At the same time, the heat-transfer equation is discretized by using weighted residual Galerkin finite element. Combined with boundary condition and parameters, the temperature field in fractured rock mass is simulated by finite element method. The temperature of fractured rock mass under the action of the seepage is combined with the initial rock temperature, fluid temperature and the rate of the flow. Thermo-isoline is discontiguous at boundary of fracture, which shows that the seepage affects the distribution of temperature field. The change rate of temperture isoline is gradually reduced along the single fissure flow, therefore the rate of heat-transfer is decreased. The influence of fluid temperature to temperature distribution is small, but different fluid temperature obviously affects thermo-isoline.


2013 ◽  
Vol 353-356 ◽  
pp. 1666-1670
Author(s):  
Yun Peng Zhang ◽  
Song Yu ◽  
Wei Shen Zhu

Based on joint statistics from the in-situ survey, using numerical simulation technique of joint network (Monte-Carlo method), the calculation model of fractured rock mass is generated. Underground seepage discharge filed in fractured rock mass surrounding storage caverns is analyzed by using distinct element method. The result of simulation has shown good agreement with surveying data. Two cases have been simulated that is water curtains is installed and is not installed. Water pressure distributions in joints are investigated in these two cases. It is shown that in the case without water curtain the groundwater in joints which locate the upper of underground caverns is drained out and water sealed conditions is completely unrealized. When water curtain pressure is set at 0.3MPa, can underground water seal the storage caverns.


2012 ◽  
Vol 238 ◽  
pp. 814-817 ◽  
Author(s):  
Ji Chang Wu ◽  
Yu Min Zhang ◽  
Hong Xia Li

The jointed finite element method (JFEM) is used to analyze the deformation and failure characteristic of fractured rock mass and anchor reinforcement effect for the water collection shaft of the main power house of Dagangshan Hydropower Station. The results show that the JFEM not only simulates the actual rock mass structure very well, but also gives the reasonable simulation results for the common unstable rock mass. The JFEM may accurately simulate the major deformation characteristic and collapse mechanism, which is another effective way to analyze the stability of fractured rock mass. The on-site monitoring results show that the anchor reinforcement is effective for the water collection shaft


2017 ◽  
Vol 117 (3) ◽  
pp. 443-463 ◽  
Author(s):  
Wei Zhang ◽  
Beibing Dai ◽  
Zhen Liu ◽  
Cuiying Zhou

Sign in / Sign up

Export Citation Format

Share Document