Complexity Analysis of Public Transportation Network in Zhangjiagang City Using Complex Network Theory

2012 ◽  
Vol 546-547 ◽  
pp. 1211-1216
Author(s):  
Yong Wang ◽  
Ta Zhou

Public transportation network has been proven that it can be simulated as a complex network. In this paper, a bus transport system of Zhangjiagang city is considered. Network degree distribution, average path length, and clustering coefficient are utilized as criteria to analyze as the complexity of the network. Experimental results show that the network which is in line with power-law distribution has a smaller average path length and a large clustering coefficient. It also indicates that, the networks of Zhangjiagang public bus system are not a small-world network with scale-free property.

2019 ◽  
Vol 11 (7) ◽  
pp. 2007 ◽  
Author(s):  
Guo-Ling Jia ◽  
Rong-Guo Ma ◽  
Zhi-Hua Hu

Urban public transportation contributes greatly to sustainable urban development. An urban public transportation network is a complex system. It is meaningful for theory and practice to analyze the topological structure of an urban public transportation network and explore the spatial structure of an urban transportation network so as to mitigate and prevent traffic congestion and achieve sustainability. By examining the Xi’an bus network, the degree distribution, average path length, aggregation coefficient, and betweenness centrality of the bus station network were computed using models in complex network theory. The results show that the node degrees of the Xi’an bus network are unevenly distributed and present a polarization diagram with long average path length and high aggregation. A model based on betweenness and its solution method was developed to improve the public transportation network’s sustainability and discuss the possibility of optimizing the sustainability by network analyzing methods.


2012 ◽  
Vol 263-266 ◽  
pp. 1096-1099
Author(s):  
Zhi Yong Jiang

Relationship between nodes in peer-to-peer overlay, currently becomes a hot topic in the field of complex network. In this paper a model of peer-to-peer overlay was purposed. And then the paper focused on figuring out the mean-shortest path length (MSPL), clustering coefficient (CC) and the degree of every node which allowed us to discover the degree distribution. The results show that the degree distribution function follows approximately power law distribution and the network possesses notable clustering and small-world properties.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Yongliang Deng ◽  
Liangliang Song ◽  
Zhipeng Zhou ◽  
Ping Liu

Capturing the interrelations among risks is essential to thoroughly understand and promote coal mining safety. From this standpoint, 105 risks and 135 interrelations among risks had been identified from 126 typical accidents, which were also the foundation of constructing coal mine risk network (CMRN). Based on the complex network theory and Pajek, six parameters (i.e., network diameter, network density, average path length, degree, betweenness, and clustering coefficient) were employed to reveal the topological properties of CMRN. As indicated by the results, CMRN possesses scale-free network property because its cumulative degree distribution obeys power-law distribution. This means that CMRN is robust to random hazard and vulnerable to deliberate attack. CMRN is also a small-world network due to its relatively small average path length as well as high clustering coefficient, implying that accident propagation in CMRN is faster than regular network. Furthermore, the effect of risk control is explored. According to the result, it shows that roof collapse, fire, and gas concentration exceeding limit refer to three most valuable targets for risk control among all the risks. This study will help offer recommendations and proposals for making beforehand strategies that can restrain original risks and reduce accidents.


Author(s):  
Xu Xu

With the development of complex network theory and the gradual application of the traffic field, the problem of cascading failure has caused great attention of researchers. This paper tries to propose a new method based on complex network theory to measure the importance of nodes in the network. Based on complex network theory, this paper first discusses the network evolution mechanism of three main contents, define the importance of nodes in the network, and the design of the network center and the evaluation of the importance of node algorithm. In the end, a critical section identification method considering the failure probability and the failure consequence is designed, and the method for calculating the node importance based on the cascading failure is proposed. Using complex network theory, a quantitative assessment of the center of public transportation network and node importance model is designed. The bus network center, for the study of node importance analysis of bus network survivability has important significance. Help guide the optimization of public transport network service. Improve transport capacity of public transportation system.


2020 ◽  
Vol 12 (8) ◽  
pp. 3190
Author(s):  
Yongliang Deng ◽  
Jinyun Li ◽  
Qiuting Wu ◽  
Shuangshuang Pei ◽  
Na Xu ◽  
...  

Building Information Modeling (BIM) technology has promoted the development of the architecture, engineering, and construction (AEC) industry, but has encountered many barriers to its application in China. Therefore, identifying the barriers to BIM application and capturing their interactions are essential in order to control and eliminate the determined barriers. From this standpoint, 23 BIM application barriers were identified through a literature review and expert interviews. Furthermore, the interactions among them were determined based on the Delphi method, which was the foundation for establishing the BIM application barrier network (BABN). Then, the software Pajek was employed to construct the network model and reveal its topological characteristics based on complex network theory, including degree, betweenness, eigenvector, clustering coefficient, network diameter, and average path length. As indicated by the results, BABN possesses scale-free network property because its cumulative degree distribution obeys power–law distribution. BABN is also a small-world network, due to its relatively high clustering coefficient as well as small average path length, implying that barrier propagation in BABN is fast. In addition, the results are discussed and recommendations are proposed. This research will help BIM stakeholders to develop coping strategies to control and eliminate BIM application barriers for the sake of driving BIM sustainable development.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yuhao Hu ◽  
Guannan Liu ◽  
Feng Gao ◽  
Fengtian Yue ◽  
Tao Gao

The rational characterization and quantitative analysis of the complex internal pore structure of rock is the foundation to solve many underground engineering problems. In this paper, CT imaging technology is used to directly characterize the three-dimensional pore network topology of sandstone with different porosity. Then, in view of the problem, which is difficult to quantify the detailed topological structure of the sandstone pore networks in the previous study, the new complex network theory is used to characterize the pore structure. PageRank algorithm is based on the number of connections between targets as a measure index to rank the targets, so the network degree distribution, average path length, clustering coefficient, and robustness based on PageRank algorithm and permeability-related topological parameters are studied. The research shows that the degree distribution of sandstone pore network satisfies power law distribution, and it can be characterized by scale-free network model. The permeability of rock is inversely proportional to the average path length of sandstone network. The sandstone pore network has strong robustness to random disturbance, while a small number of pores with special topological properties play a key role in the macroscopic permeability of sandstone. This study attempts to provide a new perspective of quantifying the microstructure of the pore network of sandstone and revealing the microscopic structure mechanism of macroscopic permeability of pore rocks.


2006 ◽  
Vol 16 (10) ◽  
pp. 3093-3102 ◽  
Author(s):  
DONG CHENGDONG ◽  
LIU ZENGRONG

This paper proposes a novel complex network with disassortative property based on multicenter networks. The average path length and clustering coefficient of the network are calculated, and the impact on the network topology is investigated. A simple dynamic system established on the proposed network is used to analyze how the disassortative property of the network affects synchronization.


Sign in / Sign up

Export Citation Format

Share Document