Applications of Neural Networks in the Hairiness of Ring Spinning Polyester/Cotton Yarn Prediction

2012 ◽  
Vol 549 ◽  
pp. 1055-1059
Author(s):  
Bo Zhao

In this paper, back-propagation (BP) neural network model is introduced and established. This work describes the application of the BP artificial neural network model for the purpose of predicting the polyester/cotton yarn hairiness. This approach has been developed and evaluated with the use of multiple sets of data, comprising of a range of processing parameters. The yarn hairiness of ring spinning is strongly related to the processing parameters. However, it is difficult to establish physical models on the relationship between the processing parameters and the yarn hairiness. Due to the artificial neural network can fully approximate any complex nonlinear system and study dynamic behavior of any serious undetermined system. It has a highly parallel calculation ability, strong robustness and fault tolerance. So using the artificial neural network to predict the polyester/cotton yarn hairiness of ring spinning is a very effective way. The experimental results and corresponding analysis show that the BP neural network model is an efficient technique for the yarn hairiness of ring spinning prediction and has wide prospect in the application of ring spinning yarn production system.

2011 ◽  
Vol 366 ◽  
pp. 108-112
Author(s):  
Bo Zhao

The artificial neural network model is used to predict the breaking elongation of polyester/cotton ring spinning yarn in this paper. In order to achieve the objective, a series of trials is conducted. The prediction values and actual test values of which are found to be rather close. Therefore, the artificial neural network model proves to be more feasible in the prediction of breaking elongation of polyester/cotton ring spinning yarn.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Gao ◽  
Xing Xin ◽  
Zhi Li ◽  
Wei Zhang

AbstractThis study aimed to evaluate the accuracy of back propagation (BP) artificial neural network model for predicting postoperative pain following root canal treatment (RCT). The BP neural network model was developed using MATLAB 7.0 neural network toolbox, and the functional projective relationship was established between the 13 parameters (including the personal, inflammatory reaction, operative procedure factors) and postoperative pain of the patient after RCT. This neural network model was trained and tested based on data from 300 patients who underwent RCT. Among these cases, 210, 45 and 45 were allocated as the training, data validation and test samples, respectively, to assess the accuracy of prediction. In this present study, the accuracy of this BP neural network model was 95.60% for the prediction of postoperative pain following RCT. To conclude, the BP network model could be used to predict postoperative pain following RCT and showed clinical feasibility and application value.


2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3042
Author(s):  
Sheng Jiang ◽  
Mansour Sharafisafa ◽  
Luming Shen

Pre-existing cracks and associated filling materials cause the significant heterogeneity of natural rocks and rock masses. The induced heterogeneity changes the rock properties. This paper targets the gap in the existing literature regarding the adopting of artificial neural network approaches to efficiently and accurately predict the influences of heterogeneity on the strength of 3D-printed rocks at different strain rates. Herein, rock heterogeneity is reflected by different pre-existing crack and filling material configurations, quantitatively defined by the crack number, initial crack orientation with loading axis, crack tip distance, and crack offset distance. The artificial neural network model can be trained, validated, and tested by finite 42 quasi-static and 42 dynamic Brazilian disc experimental tests to establish the relationship between the rock strength and heterogeneous parameters at different strain rates. The artificial neural network architecture, including the hidden layer number and transfer functions, is optimized by the corresponding parametric study. Once trained, the proposed artificial neural network model generates an excellent prediction accuracy for influences of high dimensional heterogeneous parameters and strain rate on rock strength. The sensitivity analysis indicates that strain rate is the most important physical quantity affecting the strength of heterogeneous rock.


Sign in / Sign up

Export Citation Format

Share Document