Effect of Coarse Woody Debris on Soil Microbial Functional Diversity Following a Huge Ice Storm in South China

2012 ◽  
Vol 550-553 ◽  
pp. 2649-2654
Author(s):  
Yu Duan Ou ◽  
Tian Wu ◽  
Zhi Yao Su

Soil microbe’s response to coarse woody debris (CWD) was assessed in two contrasting stands. The volume, percent cover and weight of CWD in the damaged stand were significantly much higher than the undamaged stand. Redundancy Analysis showed that CWD and soil nutrient had a significant effect on soil microbial community (p < 0.005). Decay class of CWD had the greatest influence on soil microbial communities, and soil nutrient was next to it. With increasing decay class, CWD was favorable for soil microbial functional diversity. Alkali-hydrolyzable nitrogen, available phosphorus and available potassium showed a positive correlation with decay class and made a positive contribution on soil microbial functional diversity. Stands without ice storm impact temporarily had higher soil nutrient content than those suffered severe damage at the early stage after ice storm. Soil microbial functional diversity had no difference between both slopes. Findings reflected that there were other factors affecting the soil microbes in forest ecosystem except for the CWD decomposition and soil nutrient.

2021 ◽  
Author(s):  
Xiaohong Weng ◽  
Jiayi Li ◽  
xin sui ◽  
Mengsha Li ◽  
Weiping Yin ◽  
...  

Abstract Purpose: The soil microbial community is an important bioactive component of terrestrial ecosystems. Its structural and functional diversity directly affects carbon and nitrogen processes. This study aimed to investigate the variations in the functional diversity of soil microbial communities in forests with different types of vegetation. Methods: We selected three typical vegetation types, larch (LG), black birch (BD), and larch and black birch mixed (LGBD) forests, located in the Heilongjiang Zhongyangzhan Black-billed Capercaillie Nature Reserve. The Biolog-Eco microplate technology was selected to perform these analyses. Result: Our results showed clear differences between microorganisms in the three typical forests. The average well-colour development (AWCD) change rate gradually increased with incubation time. The BD type had the highest AWCD value, followed by LGBD; the LG forest type had the lowest value. The difference in the soil microbial alpha diversity index between BD and LG was significant. A principal component analysis showed that PC1 and PC2 respectively explained 62.77% and 13.3% of the variance observed. The differences in the soil microbial carbon-source utilization patterns under different vegetation types were mainly caused by esters and carbohydrates. Redundancy analysis showed that soil microbial functional diversity was strongly affected by soil physicochemistrical properties (e.g. organic carbon, total nitrogen, and pH). Conclusion: These results provide a reference for further exploring the relationship between forest communities and soil microbes during the process of forest succession.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Xiaohong Weng ◽  
Jiayi Li ◽  
Xin Sui ◽  
Mengsha Li ◽  
Weiping Yin ◽  
...  

Abstract Purpose The soil microbial community is an important bioactive component of terrestrial ecosystems. Its structural and functional diversity directly affects carbon and nitrogen processes. This study aimed to investigate the variations in the functional diversity of soil microbial communities in forests with different types of vegetation. Methods We selected three typical vegetation types, larch (LG), black birch (BD), and larch and black birch mixed (LGBD) forests, located in the Heilongjiang Zhongyangzhan Black-billed Capercaillie Nature Reserve. The Biolog-Eco microplate technology was selected to perform these analyses. Result Our results showed clear differences between microorganisms in the three typical forests. The average well colour development (AWCD) change rate gradually increased with incubation time. The BD type had the highest AWCD value, followed by LGBD; the LG forest type had the lowest value. The difference in the soil microbial alpha diversity index between BD and LG was significant. A principal component analysis showed that PC1 and PC2 respectively explained 62.77% and 13.3% of the variance observed. The differences in the soil microbial carbon-source utilisation patterns under different vegetation types were mainly caused by esters and carbohydrates. Redundancy analysis showed that soil microbial functional diversity was strongly affected by soil physicochemistrical properties (e.g. organic carbon, total nitrogen and pH). Conclusion These results provide a reference for further exploring the relationship between forest communities and soil microbes during the process of forest succession.


2018 ◽  
Vol 48 (4) ◽  
pp. 399-411 ◽  
Author(s):  
Praveen Kumar ◽  
Han Y.H. Chen ◽  
Sean C. Thomas ◽  
Chander Shahi

Although the importance of coarse woody debris (CWD) to understory species diversity has been recognized, the combined effects of CWD decay and substrate species on abundance and species diversity of epixylic vegetation have received little attention. We sampled a wide range of CWD substrate species and decay classes, as well as forest floors in fire-origin boreal forest stands. Percent cover, species richness, and evenness of epixylic vegetation differed significantly with both CWD decay class and substrate species. Trends in cover, species richness, and evenness differed significantly between nonvascular and vascular taxa. Cover, species richness, and species evenness of nonvascular species were higher on CWD, whereas those of vascular plants were higher on the forest floor. Epixylic species composition also varied significantly with stand ages, overstory compositions, decay classes, substrate species, and their interactions. Our findings highlight strong interactive influences of decay class and substrate species on epixylic plant communities and suggest that conservation of epixylic diversity would require forest managers to maintain a diverse range of CWD decay classes and substrate species. Because stand development and overstory compositions influence CWD decay classes and substrate species, as well as colonization time and environmental conditions in the understory, our results indicate that managed boreal landscapes should consist of a mosaic of different successional stages and a broad suite of overstory types to support diverse understory plant communities.


2011 ◽  
Vol 50 (No. 4) ◽  
pp. 141-148 ◽  
Author(s):  
J. Hofman ◽  
J. Švihálek ◽  
I. Holoubek

In our case study, we measured the functional diversity of the microbial communities of twelve soils from the small natural area to assess if this assay is suitable for routine monitoring of soil biological quality. We found the BIOLOG assay meets especially practical benefits in routine monitoring of soils being simple and quick assay. However, we confirmed the ambiguity about the most appropriate analysis of the BIOLOG multivariate data and about the best parameter, which can be derived from the assay. The different analyses of the data were examined and various parameters derived from the BIOLOG assay were comparatively used to contribute to the discussion of how the data should be evaluated. We showed that not-normalized raw absorbances or trapezoid areas should be used for calculation of diversity index if the inoculum was standardized. There was no single answer to what parameter provided more correct results in the multivariate statistical analysis. Evaluating at least one not-normalized (e.g. trapezoid area) and one normalized parameter (e.g. absorbances read in fixed AWCD) was strongly suggested keeping in mind that they reveal different information.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1083
Author(s):  
Xiu Lan ◽  
Hu Du ◽  
Wanxia Peng ◽  
Yongxian Liu ◽  
Zhilian Fang ◽  
...  

We selected five different ages of eucalyptus plantation sites to understand the culturable microbial functional diversity and the ecological functions of the soil from the eucalyptus plantations in Guangxi. We investigated the carbon source metabolic activity and diversity features of surface soil microbes using the Biolog EcoPlate method (Biolog Inc., Hayward, CA, USA), along with the microbial functional diversity and physicochemical properties of the soil. The results suggest that the carbon source utilization capacity of the soil microbes at various forest ages manifested as 3-year-old > 5-year-old > 2-year-old > 1-year-old > 8-year-old. The abundance, Shannon–Weiner, Pielou, Simpson, and McIntosh diversity indices of the soil microbes initially increased and then decreased with further increase in forest age, with the highest levels in 3- and 5-year-old forests. As per the heatmap analysis, the 3-year-old forest could metabolize the most carbon source species, while the 1- and 8-year-old forests could metabolize the least. Carbohydrates were the most frequently metabolized carbon source. The principal component analysis (PCA) shows that PC1 and PC2 extracted from the 31 factors have 52.42% and 13.39% of the variable variance, respectively. Carbohydrates contributed most to PCA, followed by amino acids and carboxylic acids, and phenolic acids and amines, the least. Canonical correspondence analysis shows that total carbon, alkali-hydrolyzable nitrogen, total nitrogen, total potassium, and pH negatively correlate with soil microbial functional diversity, whereas total and available phosphorus positively correlate with it. To sum up, the soil microbial community structure of eucalyptus plantations at various ages reflects the soil environmental conditions and nutrient availability, which is of great significance in the efficient management and high-quality operation of their plantations in Guangxi.


Sign in / Sign up

Export Citation Format

Share Document