Effect of pH on the Phosphorous Components in Tetra-Hydroxymethyl Phosphonium Chloride Solution

2012 ◽  
Vol 560-561 ◽  
pp. 237-241 ◽  
Author(s):  
Shuang Xi Shao ◽  
Lan Jiang ◽  
Ya Li ◽  
Kai Qi Shi

At present, tetra-hydroxymethyl phosphonium chloride (THPC) is widely used in flame retardant finishing, industrial water treatment and leather manufacture industry etc., and its decomposition which was caused by pH changing will influence on the actual application. So acid-alkali decomposition of THPC was studied by 31P Nuclear Magnetism Resomance (31P NMR), spectrophotometry and titration respectively. The results show that THPC solution is stable when pH9.0, all of the phosphorus compounds converts to TrHPO. Consequently, THPC content decreases when pH of the THPC solution rising, which could give a favorable guide in THPC application.

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 398
Author(s):  
Wen-Yue Wang ◽  
Zhao Qin ◽  
Hua-Min Liu ◽  
Xue-De Wang ◽  
Jing-Hao Gao ◽  
...  

Subcritical water treatment has received considerable attention due to its cost effectiveness and environmentally friendly properties. In this investigation, Chinese quince fruits were submitted to subcritical water treatment (130, 150, and 170 °C), and the influence of treatments on the structure of milled wood lignin (MWL) was evaluated. Structural properties of these lignin samples (UL, L130, L150, and L170) were investigated by high-performance anion exchange chromatography (HPAEC), FT-IR, gel permeation chromatography (GPC), TGA, pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), 2D-Heteronculear Single Quantum Coherence (HSQC) -NMR, and 31P-NMR. The carbohydrate analysis showed that xylose in the samples increased significantly with higher temperature, and according to molecular weight and thermal analysis, the MWLs of the pretreated residues have higher thermal stability with increased molecular weight. The spectra of 2D-NMR and 31P-NMR demonstrated that the chemical linkages in the MWLs were mainly β-O-4′ ether bonds, β-5′ and β-β′, and the units were principally G- S- H- type with small amounts of ferulic acids; these results are consistent with the results of Py-GC/MS analysis. It is believed that understanding the structural changes in MWL caused by subcritical water treatment will contribute to understanding the mechanism of subcritical water extraction, which in turn will provide a theoretical basis for developing the technology of subcritical water extraction.


2021 ◽  
Author(s):  
Kuno Kasak ◽  
Keit Kill ◽  
Evelyn Uuemaa ◽  
Ülo Mander

<p>Treatment wetlands are widespread measures to reduce agricultural diffuse pollution. Systems that are often planted with emergent macrophytes such as Typha spp. and Phragmites spp. are efficient to reduce nutrients, particularly nitrogen and phosphorus compounds. While many experiments have been conducted to study the emission of carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>), little attention has been paid for the emission of nitrous oxide (N<sub>2</sub>O). Few studies have been shown that usually N<sub>2</sub>O emission from water saturated ecosystems such as wetlands is low to negligible. In Vända in-stream treatment wetland that was built in 2015 and located in southern Estonia, we carried out first long term N<sub>2</sub>O measurements using floating chambers. The total area of the wetland is roughly .5 ha; 12 boardwalks, each equipped with two sampling spots, were created. Samples were collected biweekly from March 2019 through January 2021. In each sampling campaign water table depth, water and air temperature, O<sub>2</sub> concentration, oxygen reduction potential, pH and electrical conductivity were registered. Water samples for TN, NO<sub>3</sub>-N, NO<sub>2</sub>-N, TOC, TIC and TC were collected from inflow and outflow of the system in each sampling session and the average concentrations were 5.1 mg/L, 3.68 mg/L, <0.1 mg/L, 41.2 mg/L and 28.7, respectively. Our results showed a very high variability of N<sub>2</sub>O emission: the fluxes ranged from -4.5 ug m<sup>-2</sup> h<sup>-1</sup> to 2674.2 ug m<sup>-2</sup> h<sup>-1</sup> with mean emission of 97.3 ug m<sup>-2</sup> h<sup>-1</sup>. Based on gas samples (n=687) we saw a strong correlation (R<sup>2</sup> = -0.38, p<0.0001) between N<sub>2</sub>O emission and water depth. The average N<sub>2</sub>O emission from sections with the water table depth >15 cm was 45.9 ug m<sup>-2</sup> h<sup>-1</sup> while sections with water table depth <15 cm showed average emission of 648.3 ug m<sup>-2</sup> h<sup>-1</sup>. The difference between these areas was more than 10 times. Water temperature that is often considered as the main driver had less effect to the N<sub>2</sub>O emission. For instance, at lower temperatures, when the emissions from deeper zones decreased, there was no temperature effect on emissions from shallow zones. We also saw that over the years the overall N<sub>2</sub>O emission followed clear seasonal dynamics and has a slight trend towards lower emissions. This can be related to the more intensive vegetation growth that has been increased from ~40% in 2019 to approximately 90% in 2020. Our study demonstrates that the design of the wetland is not only important for the water treatment, but it can also determine the magnitude of greenhouse gas emissions. We saw that even slight changes in water table depth can have a significant effect on the annual N<sub>2</sub>O emission. Thus, in-stream treatment wetlands that have water table depth at least 15 cm likely have remarkably lower N<sub>2</sub>O emissions without losing water treatment efficiency.</p><p> </p>


2020 ◽  
Vol 15 ◽  
pp. 155892502090132
Author(s):  
Sang-Hoon Lee ◽  
Seung-Won Oh ◽  
Young-Hee Lee ◽  
Il-Jin Kim ◽  
Dong-Jin Lee ◽  
...  

To prepare flame-retardant epoxy resin, phosphorus compound containing di-hydroxyl group (10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phospha phenanthrene-10-oxide, DOPO-HQ) was reacted with uncured epoxy resin (diglycidyl ether of bisphenol A, YD-128) and then cured using a curing agent (dicyandiamide, DICY). This study focused on the effect of phosphorus compound/phosphorus content on physical properties and flame retardancy of cured epoxy resin. The thermal decomposition temperature of the cured epoxy resins (samples: P0, P1.5, P2.0, and P2.5, the number represents the wt% of phosphorus) increased with increasing the content of phosphorus compound/phosphorus (0/0, 19.8/1.5, 27.8/2.0, and 36.8/2.5 wt%) based on epoxy resin. The impact strength of the cured epoxy resin increased significantly with increasing phosphorus compound content. As the phosphorus compound/phosphorus content increased from 0/0 to 36.8/2.5 wt%, the glass transition temperature (the peak temperature of loss modulus curve) increased from 135.2°C to 142.0°C. In addition, as the content of phosphorous compound increased, the storage modulus remained almost constant up to higher temperature. The limiting oxygen index value of cured epoxy resin increased from 21.1% to 30.0% with increasing phosphorus compound/phosphorus content from 0/0 to 36.8/2.5 wt%. The UL 94 V test result showed that no rating for phosphorus compounds less than 19.8 wt% and V-1 for 27.8 wt%. However, when the phosphorus compound was 36.8 wt%, the V-0 level indicating complete flame retardancy was obtained. In conclusion, the incorporation of phosphorus compounds into the epoxy chain resulted in improved properties such as impact strength and heat resistance, as well as a significant increase in flame retardancy.


2020 ◽  
Vol 182 ◽  
pp. 109376
Author(s):  
Chanchal Kumar Kundu ◽  
Chandra Sekhar Reddy Gangireddy ◽  
Lei Song ◽  
Yuan Hu

2011 ◽  
Vol 21 ◽  
pp. 228-233 ◽  
Author(s):  
Bachar Koubaissy ◽  
Joumana Toufaily ◽  
Lina Kafrouny ◽  
Guy Joly ◽  
Patrick Magnoux ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document