Study on Doppler Velocity Measurement System

2012 ◽  
Vol 562-564 ◽  
pp. 1240-1243
Author(s):  
Jian Chao Li ◽  
Jun Hong Su ◽  
Ming Gao

In order to satisfy the high accuracy velocity measurement requirement, using the improved dual-frequency laser Doppler velocity measurement principle, designed a set of laser Doppler velocity measurement system. System consists of two parts: optical system and signal acquisition and processing system. Through the establishment of dual-frequency laser Doppler velocity measurement experimental platform for testing, the result shows that the method can be carried on the high accuracy velocity measurement which in high speed move object. Measurement range from 0.1 m/s to 50 m/s, the error is less than 2 percent and it could increase the speed measurement range.

2020 ◽  
Vol 10 (4) ◽  
pp. 1536
Author(s):  
Fang Cheng ◽  
Jingwu Zou ◽  
Hang Su ◽  
Yin Wang ◽  
Qing Yu

In this paper, a novel design of a surface topography measurement system is proposed, to address the challenge of accurate measurement in a relatively large area. This system was able to achieve nanometer-scale accuracy in a measurement range of 100 mm × 100 mm. The high accuracy in a relatively large area was achieved by implementing two concepts: (1) A static coordinate system was configured to minimize the Abbe errors. (2) A differential measurement configuration was developed by setting up a confocal sensor and a film interferometry module to separate the motion error. In order to accommodate the differential measurement probes from both sides of the central stage and ensure the system rigidity with balanced supports, separate linear guides were introduced in this system. Therefore, the motion Degree of Freedom (DoF) was analyzed in order to address the challenge of an over-constrained mechanism due to multiple kinematic pairs. An optimal configuration and a quick assembly process were proposed accordingly. The experimental results presented in this paper showed that the proposed modular measurement system was able to achieve 10 nm accuracy in measuring the surface roughness and 100 nm accuracy in measuring the step height in the range of 100 mm × 100 mm. In summary, the novel concept of this study is the build of a high-accuracy system with conventional mechanical components.


Author(s):  
R. Va´zquez ◽  
J. M. Sa´nchez

In 1999, ITP (Industria de Turbopropulsores, S.A.) launched a wide on-going research program focusing on new technologies to provide significant improvements in Low Pressure Turbines cost and weight. As consequence of the new technologies the experience limits are exceeded and new unknown concepts, like high stage loading turbines, must be explored and then a wide experimental work is required for validation purposes. Cold flow single stage rigs in high-speed facilities were selected by ITP as main vehicle to carry out the experimental validation. Single stage Low Pressure Turbine rigs have low-pressure ratio and power consumption, therefore efficiency predictions based on temperature drop require high accuracy thermocouple measurement systems (precision uncertainties lower than ±50 mK), if small efficiency variations must be captured. In this paper, a detailed uncertainty analysis is introduced and a temperature measurement system that allows achieving such high measurement accuracy is evaluated and described. Type T thermocouples are proposed for use in the range 0°C to 80°C, which are individually calibrated. The procedure followed for this calibration is presented and how is possible to achieve a precision of 30 mK. It is also shown as conventional UTR based on metal plates can behave as good as thermal baths in terms of temperature uniformity and errors, with the adequate isolation and temperature reference calibration. The conventional data recording and voltage measurement systems are experimentally evaluated, and they are found as main source of temperature errors. Although following some recommendations the precision of those systems can be improved, it is experimentally probed and therefore suggested the use of high accuracy voltmeter with a commutation unit to reduce significantly the temperature uncertainty. Finally a miniature Kiel Shroud is proposed and aerodynamically characterised in a high-speed facility. Mach, Reynolds number, yaw, blockage and manufacturing tolerance impact on recovery factor can be inferred from those results.


Author(s):  
Taehyeong Kim ◽  
Dongho Oh ◽  
Youngjin Kim ◽  
Jihyeon Kim ◽  
Byeongcheol Lee

Printed electronics is a next-generation process technology that is suitable for high speed and high volume production and can make electronic devices and circuits on flexible materials. To commercialize printed electronics, it is necessary to improve the alignment precision of printing. In order to improve the alignment precision of the roll-to-roll process, accurate measurement of the web position is required. Therefore, in the previous research of this paper, we proposed a measurement system of the moving direction and the lateral movement using an encoder. However, in the previous study, the direction of error control had to be set according to the measurement position of the encoder, and the measurement range was so narrow. In this paper, we propose a measurement system that can detect the direction of error and increase the effective measurement range using the burst alignment pattern that generates the burst signal. Applying it to roll-to-roll printing position measurement systems, measurements can be performed with greatly improved efficiency and measurement range.


2014 ◽  
Vol 22 (3) ◽  
pp. 3600 ◽  
Author(s):  
Chih-Hao Cheng ◽  
Lyu-Chih Lin ◽  
Fan-Yi Lin

Sign in / Sign up

Export Citation Format

Share Document