The Dynamic Analysis of Concrete Pump Truck Arm in Civil Engineering

2012 ◽  
Vol 568 ◽  
pp. 138-141
Author(s):  
Li Dai ◽  
Yun Gong Li ◽  
Yu Liu ◽  
Jian Wang

The concrete pump truck integrates transportation with pouring process ,which is characterized with flexibility, facility and celerity in civil engineering. As for the concrete pump truck, the arm system is the most important because the rationality of the arm directly influences the performance and pouring position of the truck in its application in civil engineering. For the arm system of the concrete pump truck, the movement of the arm system and the hydraulic cylinder are analyzed respectively with multi-body dynamic theory. By using numerical arithmetic to resolve the dynamic equation, the terminal track of the arms is analyzed. It shows that the kinetic equation built by multi-body dynamics can describe the dynamic characteristics of pump truck exactly.

2009 ◽  
Vol 16-19 ◽  
pp. 806-810 ◽  
Author(s):  
Li Dai ◽  
Jian Wang ◽  
Bo Zhao ◽  
Jie Liu

For the concrete pump truck, the movements of the arm and the hydraulic cylinder are analyzed respectively with multi-body dynamic theory. And with the applying of PD control theory, the dynamic equation of arm system is also built. And according to the numerical solution of the equation, it is proved that the dynamic equation can describe every dynamic character of the concrete pump truck well.


2012 ◽  
Vol 538-541 ◽  
pp. 773-776 ◽  
Author(s):  
Li Dai ◽  
Da Lu Xu ◽  
Yu Liu ◽  
Jian Wang

The flexible robotic arm drived by hydraulic are widely applied in most kinds of large engineering equipments, such as concrete pump truck, bridge monitor truck,etc. Nevertheless, the flexible distortion always break the precision of end-position and cause liberation of the whole arm system. In this paper, the movement of flexible hydraulic robotic arm and hydraulic cylinders are separately analyzed with flexible multi-body dynamics. And the dynamic differential equation is built with the driving force of the hydraulic cylinder as the main force. The equation is based on the theory of flexible multi-body dynamics, building the coupled model of robotic arm system and hydraulic-driving system to study the relation between the end-position, angle and the hydraulic system. What’s more, the simulation model of the mechanical arms is built by the dynamic simulation software. The project will theorectically support the intelligent control or auxiliary control of large engineering equipments.


Author(s):  
Qiuwan Duan ◽  
Yang Yang

When a platform is operating in a mooring, various vessels that frequently pass by result in severe accidental collisions of the platform. Thus, the kinematic response of the mooring platform should be investigated. A new analytical method, including a load analysis and kinematics analysis, is proposed in this paper. In the load analysis, the impact force is calculated using finite element method (FEM). In the kinematic analysis, closed-form analytical expressions based on multi-body dynamics are derived with the impact force as an input. Furthermore, the expressions are improved considering the fluid effect. A series of collision cases are implemented to validate the proposed method by FEM. The kinematic results solved by the proposed method agree well with FEM, which illustrates that the method is feasible and accurate. However, the proposed method taking around 30s, which is much shorter than 7200s by FEM, is proved to be more efficient.


2013 ◽  
Vol 328 ◽  
pp. 589-593
Author(s):  
Li Hua Wang ◽  
An Ning Huang ◽  
Guang Wei Liu

There are higher requirements on running stability of the rail vehicle with the incensement of the running speed. The running stability is one of the important indicators of evaluating the dynamic performance of the rail vehicle. In this paper, the whole multi-body dynamic model of the rail vehicle was proposed based on the theory of multi-body dynamics in the software of Simpack. And the lateral and vertical vibrate accelerations of the rail vehicle were simulated when it was inspired by the track irregularities. Then the running stabilities of the rail vehicle were estimated accurately. This will propose basis on the improving design and optimization design of the whole rail vehicle.


2013 ◽  
Vol 339 ◽  
pp. 425-429 ◽  
Author(s):  
Song Wang ◽  
Da Wei Liu ◽  
Wei Liu

In this paper, a detailed rigid-flexible coupling multi-body dynamic model of heavy vehicle was established using multi-body dynamics method, and B class road model was built using harmonic superposition method. Then, the platform of heavy vehicle dynamics simulation was established. The driver seat acceleration and tire dynamic load were simulated at different speeds under the input of different random road excitations. According to the ride comfort evaluation method provided by ISO2631-1, total weighted root-mean-square (RMS) acceleration evaluation method was used to evaluate the ride comfort of heavy vehicle at different ride speeds.


2013 ◽  
Vol 712-715 ◽  
pp. 1464-1467
Author(s):  
Jia Sheng Li ◽  
Zhen Qiang Liao ◽  
Ming Qiu ◽  
Fei Wang

To improve the firing stability of Galtling gun by installing an arc-shaped support plate on a light tripod,a firing dynamic model of Gatling gun shooting on light tripod which has a arc-shaped support plate fixed on the different positions established based on rigid-flexible multi-body dynamic theory. The muzzles vibration and tripods deformation obtained through dynamic simulation. The results show that while the arc-shaped support plate fixed close to the bracket, the supporting effect to Galting gun decreased, tripods deformation and muzzles vibration increased. On the contrary, it reduced muzzles vibration and enhanced the firing stability. The analytic results provide a reference to improve the arc-shaped support plate in tripod.


2014 ◽  
Vol 592-594 ◽  
pp. 2282-2286 ◽  
Author(s):  
Rahul Dilip Nandurkar ◽  
Akash Mohanty ◽  
P. Barath

The paper presents a technique to simulate driving mechanism in automotive seat height adjuster. Simulation is done using multi-body dynamic software ADAMS. The exercise included development of an accurate model using design tool. The design model is then converted to simulation tool. Selected operating force is applied and simulated. The area of focus is forces between two gear meshing parts. Simulation result is then compared with analytical calculation. Validation is also made for the considered factor of safety.


2014 ◽  
Vol 952 ◽  
pp. 161-164 ◽  
Author(s):  
Zheng Li ◽  
Yang Chen

The dynamic performance of wind turbine gearbox is very important for measuring the integrated vibration and noise of the whole drivetrain system of wind turbine. The stiffiness and modal parameters of the gearbox will influence the system vibration situation obviously. The wind turbine gearbox is a kind of complicated coupled mechanics; it means the modal analysis on gearbox should consider the coupling effects of the components and define logical damping factors. This paper presents a method to simulate wind turbine gearbox system with the multi-body drivetrain dynamic analysis software. The modal analysis of wind turbine gearbox can be carried out on the basis of the multi-body dynamic theory.


Sign in / Sign up

Export Citation Format

Share Document