Kinematic Formulation of Mooring Platform During Collisions Based on Multi-Body Dynamic Theory

Author(s):  
Qiuwan Duan ◽  
Yang Yang

When a platform is operating in a mooring, various vessels that frequently pass by result in severe accidental collisions of the platform. Thus, the kinematic response of the mooring platform should be investigated. A new analytical method, including a load analysis and kinematics analysis, is proposed in this paper. In the load analysis, the impact force is calculated using finite element method (FEM). In the kinematic analysis, closed-form analytical expressions based on multi-body dynamics are derived with the impact force as an input. Furthermore, the expressions are improved considering the fluid effect. A series of collision cases are implemented to validate the proposed method by FEM. The kinematic results solved by the proposed method agree well with FEM, which illustrates that the method is feasible and accurate. However, the proposed method taking around 30s, which is much shorter than 7200s by FEM, is proved to be more efficient.

2012 ◽  
Vol 568 ◽  
pp. 138-141
Author(s):  
Li Dai ◽  
Yun Gong Li ◽  
Yu Liu ◽  
Jian Wang

The concrete pump truck integrates transportation with pouring process ,which is characterized with flexibility, facility and celerity in civil engineering. As for the concrete pump truck, the arm system is the most important because the rationality of the arm directly influences the performance and pouring position of the truck in its application in civil engineering. For the arm system of the concrete pump truck, the movement of the arm system and the hydraulic cylinder are analyzed respectively with multi-body dynamic theory. By using numerical arithmetic to resolve the dynamic equation, the terminal track of the arms is analyzed. It shows that the kinetic equation built by multi-body dynamics can describe the dynamic characteristics of pump truck exactly.


2012 ◽  
Vol 630 ◽  
pp. 297-301
Author(s):  
Yu Wang ◽  
En Chen ◽  
Jun Qing Gao ◽  
Yun Feng Gong

The hammer crusher always works under heavy load, discontinuous and impact working condition, which is complex, especially when impact happens. The spindle is one of the most important parts of the hammer crusher, the performance of which has a great effect on the whole structure. This paper discussed the main loads acting on the spindle. After the multi-body system dynamics (MBD) models were built up in previous paper, three kinds of multi-body system simulation (MBS) analysis were conducted to gain the impact loads, then a static analysis of spindle was carried out with the loads, which verified the reliability of the design of the spindle. To evaluate the correctness of the MBS results, comparisons between simulation and theoretical impact force results were done, which proved the acceptance of the MBD models. Another theoretical analysis model for the spindle was established and employed to verify the results of FEA and reliability of the design of the spindle.


2014 ◽  
Vol 591 ◽  
pp. 193-196 ◽  
Author(s):  
B. Vijaya Ramnath ◽  
K. Venkataraman ◽  
Selvaraj Venkatram ◽  
Sohil Thomas ◽  
Muthukumarasamy Maheshwaran ◽  
...  

- Powered Two Wheelers (PTW) are very sensitive to environmental conditions and advancement in two-wheeler safety has not kept pace with the advancement in two-wheelers. The objective of our research is to bring about an improved design for powered two wheelers, analyzing the changes through simulation and thereby improving the safety considerations. According to the databases referred regarding accidents in depth study, it is observed that two-wheelers top the chart in number of accidents by a big margin and these accidents causes more fatal injuries. To save the rider, this paper proposes to constraint the rider along with pillion to the vehicle using “Leg holding device“ and seat belt. Side airbags are employed to absorb the impact of accident. The present safety system saves the rider in frontal collisions, while this research also focuses on side collisions. ISO 13232 standard accident scenarios were followed. For simulation of scenarios multi body dynamics software called RecurDyn is used. The improvement in employing safety measures is compared with its absence and results are plotted.


2018 ◽  
Vol 934 ◽  
pp. 24-29
Author(s):  
Prapasiri Pongprayoon ◽  
Attaphon Chaimanatsakun

Graphene nanopore has been widely employed in nanofilter or nanopore devices due to its outstanding properties. The understanding of its mechanical properties at nanoscale is crucial for device improvement. In this work, the mechanical properties of graphene nanopore is thus investigated using atomistic finite element method (AFEM). Four graphene models with different pore shapes (circular (CR), horizontal rectangle (RH), and vertical rectangle (RV)) in sub-nm size which could be successfully fabricated experimentally have been studied here. The force normal to a pore surface is applied to mimic the impact force due to a fluid flow. Increasing pore size results in the reduction in its strength. Comparing among different pore shapes with comparable sizes, the order of pore strength is CR>RH>RV>SQ. In addition, we observe that the direction of pore alignment and geometries of pore edge also play a key role in mechanical strength of nanopores.


2013 ◽  
Vol 328 ◽  
pp. 589-593
Author(s):  
Li Hua Wang ◽  
An Ning Huang ◽  
Guang Wei Liu

There are higher requirements on running stability of the rail vehicle with the incensement of the running speed. The running stability is one of the important indicators of evaluating the dynamic performance of the rail vehicle. In this paper, the whole multi-body dynamic model of the rail vehicle was proposed based on the theory of multi-body dynamics in the software of Simpack. And the lateral and vertical vibrate accelerations of the rail vehicle were simulated when it was inspired by the track irregularities. Then the running stabilities of the rail vehicle were estimated accurately. This will propose basis on the improving design and optimization design of the whole rail vehicle.


2012 ◽  
Vol 538-541 ◽  
pp. 2631-2635
Author(s):  
Xin Tan ◽  
Yao Li ◽  
Jun Jie Yang

This paper introduces a complex multi-body dynamics model which is established to simulate the dynamic behaviors of a multi-stage hybrid planetary gearing based on the finite element method and the software ADAMS. The finite element method is used to introduce deformable ring-gears and sun-gears by using 3D brick units. A whole multi-body dynamics model is established in the software ADAMS. Mesh stiffness variation excitation and gear tooth contact loss are intrinsically considered. A rich spectrum of dynamic phenomena is shown in the multi-stage hybrid planetary gearing. The results show that the static strength of main parts of the gearing is strong enough and the main vibration and noises are excited by the dynamic mesh forces acting on the tooth of planet-gears and ring-gears.


2011 ◽  
Vol 201-203 ◽  
pp. 1710-1713
Author(s):  
Ai Hua Tang ◽  
Jian Ping Tian ◽  
Xiao Xu Liu

The multi-body dynamics analysis is an important method to analyze the movement and dynamics characteristics of a car in modern vehicle design process . The twist beam rear suspension which is for rear wheel steering was widely equipped on front engine rear wheel drive vehicles . The modeling of twist beam rear suspensions is always difficult to describe accurately for its unique structural behaviour . First of all , a non-linear method based on multi-body dynamics was used to establish the dynamics model of the twist beam rear suspension system by using the ADAMS/Car . Secondly, the kinematics analysis of the rear suspension was realized and the main suspension parameters (toe angle, camber angle and wheel base) were calculated by changing wheel travel by means of ADAMS/Car . Finally , the suspension was optimized . The result shows that integrative use of ADAMS/Car and ADAMS/Insight in the kinematics analysis and optimized design of the suspensions is rapidly and effectively to design vehicle suspensions .


2009 ◽  
Vol 16-19 ◽  
pp. 806-810 ◽  
Author(s):  
Li Dai ◽  
Jian Wang ◽  
Bo Zhao ◽  
Jie Liu

For the concrete pump truck, the movements of the arm and the hydraulic cylinder are analyzed respectively with multi-body dynamic theory. And with the applying of PD control theory, the dynamic equation of arm system is also built. And according to the numerical solution of the equation, it is proved that the dynamic equation can describe every dynamic character of the concrete pump truck well.


2012 ◽  
Vol 630 ◽  
pp. 291-296
Author(s):  
Yu Wang ◽  
En Chen ◽  
Jun Qing Gao ◽  
Yun Feng Gong

In the past finite element analysis (FEA) and multi-body system simulation (MBS) were two isolated methods in the field of mechanical system simulation. Both of them had their specific fields of application. In recent years, it is urgent to combine these two methods as the flexible multi-body system grows up. This paper mainly focuses on modeling of the spindle system of hammer crusher, including geometric model, finite element model and multi-body dynamics (MBD) model. For multi-body dynamics modeling, the contact force between hammer and scrap steel was discussed, which is important to obtain the impact force. This paper also proposed how to combine FEA and MBS to analyze the dynamic performance of the spindle system by using different software products of MSC.Software.


Sign in / Sign up

Export Citation Format

Share Document