Effect of Contact Characteristics on the Friction and Wear Behaviors of Stainless Steel/Copper-Impregnated Metalized Carbon under Electric Current

2012 ◽  
Vol 581-582 ◽  
pp. 359-362
Author(s):  
Tao Ding ◽  
Guang Xiong Chen ◽  
Qiu Dong He ◽  
Wen Jing Xuan

Influence of the support stiffness and contact force on friction and wear behaviors of stainless steel rubbing against copper-impregnated metalized carbon under electric current was researched on an improved friction and wear test machine. The result indicates that the support stiffness and the contact force significantly affect the friction coefficient of contact pairs, wear and surface roughness of pin samples. The appropriated support stiffness and contact force can effectively reduce friction material wear of contact couple.

2010 ◽  
Vol 150-151 ◽  
pp. 1364-1368 ◽  
Author(s):  
Tao Ding ◽  
Guang Xiong Chen ◽  
Ming Xue Shen ◽  
Min Hao Zhu ◽  
Wei Hua Zhang

Friction and wear tests of stainless steel rubbing against copper-impregnated metalized carbon with electric current were carried on the pin-on-disc tester. The result indicates that arc discharge occurs in the process of experiments, and the intensity of arc discharge of interface increases with increasing of electric current and sliding velocity. As increasing of the arc discharge intensity, friction coefficient shows a tendency of slightly increase. While the rate of copper-impregnated metalized carbon material increase significantly with the increase of arc discharge intensity. Through observing the worn surface morphology of pin samples, it is found that the abrasive wear is dominant at small arc discharge due to worn particles and arc ablation craters, but arc erosion and oxidation wear are the main wear mechanisms in condition of large arc discharge due to arc discharge and its producing high temperature. The materials transfer of contact couple occurs in the process of friction and wear.


2017 ◽  
Vol 69 (5) ◽  
pp. 738-749 ◽  
Author(s):  
Anil P.M. ◽  
Vasudevan Rajamohan

Purpose Surface roughness has been proved to be influencing the running-in wear of machined components under dry and lubricated sliding conditions. Zinc dialkyl dithiophosphate (ZDDP) is widely used as an anti-wear additive, which reduces the wear by the formation of a tribofilm on the surface (Spikes, 2004). Factors such as temperature, sliding distance, etc. influence the formation of the film. A significant reduction in the power loss due to friction and wear is possible if a synergy is attained between surface roughness effects and the effectiveness of the tribofilm. The present work aims to study the influence of surface roughness and ZDDP addition on the formation and removal of the tribofilm under high contact pressures. Design/methodology/approach Samples were prepared by machining. Surface roughness was varied by varying the milling parameters. A reciprocating friction and wear test machine with a ball-on-flat geometry was used for the study. Tests were performed with mineral base oil and base oil added with 1 per cent by weight ZDDP under different operating parameters. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) with energy dispersive X-Ray spectroscopy (EDS) analysis were conducted to study the surface morphology of the tribofilm. Findings A quasi-steady-state analysis conducted showed that the wear rate was much lower when tested with base oil containing ZDDP after about 65 min. AFM analysis confirmed the presence of chemically reacted films on the surface. SEM analysis revealed agglomeration of crystal like glassy phosphates. However, high contact pressures at the interface caused the removal of the films resulting in variations in the coefficient of friction. A comparison of the wear rates among the samples of different roughness values tested at 100°C showed that the anti-wear performance of ZDDP was not effective due to high contact pressures. Originality/value The findings in this study regarding the tribofilm formation with ZDDP additive and its failure due to high contact pressures will be beneficial for further investigation on wear resistant boundary films developed under such extreme conditions.


RSC Advances ◽  
2016 ◽  
Vol 6 (7) ◽  
pp. 5977-5987 ◽  
Author(s):  
N. Nemati ◽  
M. Emamy ◽  
S. Yau ◽  
J.-K. Kim ◽  
D.-E. Kim

Polytetrafluoroethylene (PTFE) coating is known as a low friction material that is often used as a solid lubricant coating.


2018 ◽  
Vol 19 (1) ◽  
pp. 105
Author(s):  
Amira Sellami ◽  
Mohamed Kchaou ◽  
Reçai Kus ◽  
Jamal Fajoui ◽  
Riadh Elleuch ◽  
...  

Automotive brake lining materials are composite materials of very complex formulation, highly heterogeneous. They help to carry out the desired combination of braking performance properties. Obviously, it requires that the friction material exhibits good complementarities and adequate combination of physico-chemical, thermal properties that act synergistically to provide the braking performance which should be adjusted by the addition of metallic fillers. The aim of this work is to study the role of one of the copper alloy particles, namely brass, on friction and wear. For this purpose, the experimental approach is based on the development of a simplified formulation. Three derived composites were developed in the laboratory by the addition 1.5 wt.%, 3 wt.% and 4.5 wt.% of brass. It is shown that addition of copper alloy particles increased thermal properties. Wear test results show that brass contributes to friction and wear mechanisms from a quantity introduced in the formulation equal to 4.5 wt.%. In fact, given its large size, it acts as primary plates serving as supports for the formation and expansion of plates necessary to enhance the stability of friction coefficient. Conversely, when adding an amount less than 4.5%, brass particles are generally all removed from the matrix implying a higher source flow of third-body wear.


2018 ◽  
Vol 764 ◽  
pp. 86-92
Author(s):  
Zhi Peng Chen ◽  
Xiao Yi Jin ◽  
Chun Yun Ji ◽  
Chuan Wang ◽  
Jian Liu Zhu

Friction and wear are very important in mechanical design. This paper studies the friction and wear characteristics of 45 steel under oil lubrication. The sliding friction and wear experiment was carried out with the pin plate friction pairs on the MMW-1A friction and wear test machine. Researching the influence of velocity on friction factor under the same load, the relation between wear and load and wear analysis under the same speed different loads. The results showed that under the same load and with the increase of velocity, the friction factor had a gradually decreasing trend. When some of the parameters were certain, the wear volume and the loading force was roughly linear relation. Pitting occurred when the load increased.


2010 ◽  
Vol 105-106 ◽  
pp. 175-178 ◽  
Author(s):  
Chen Wang ◽  
Li Min Dong ◽  
Qing Feng Zan ◽  
Pen Guo ◽  
Jie Mo Tian

By using the ring-block friction and wear machine, the friction and wear behavior of nano-ZrO2 ceramic test block against GCr15 steel test ring has been studied. At the same time, friction and wear test of 45# steel block against GCr15 steel ring has also been conducted for comparison. By using self-made test machine for the wear ability of the hip joint, the friction test of nano-ZrO2 ceramic hip joint head against ultra-high molecular weight polyethylene (UHMWPE) acetabulum has been done, the friction test of Co-Cr-Mo alloy hip joint head against UHMWPE acetabulum has also been made for comparison. The results show that the friction factor of nano-ZrO2 ceramic test block against GCr15 steel test ring is less 37.3% than that of 45# steel block against GCr15 steel ring, the wear weight of nano-ZrO2 ceramic test block against GCr15 steel test ring is only 0.76% of that of 45# steel block against GCr15 steel ring. The wear weight of UHMWPE acetabulum against nano-ZrO2 ceramic hip joint head is 61.5% of UHMWPE acetabulum against Co-Cr-Mo alloy hip joint head. This indicates nano-ZrO2 ceramic has good wear resistance property and is the ideal materials for artificial Hip joint head Prostheses.


1980 ◽  
Vol 102 (4) ◽  
pp. 526-533 ◽  
Author(s):  
Kyuichiro Tanaka

Two types of experiments were carried out in this work. In one experiment, the smooth steel sphere was slid on polymer plates at a very low speed. Water reduced to some extent or very much the friction of polymers. In another experiment, the polymer pins were rubbed against the stainless steel disk at various speeds. In the sliding of polymers on the disk without the transferred polymer, a slight reduction of friction generally occurred under boundary lubrication; however, it occurred clearly in some cases on the disk with the transferred polymer. In these experiments, surface roughness plays an important role in boundary lubrication with water. The wear of polymers increases generally under lubrication. The amount of polymer transferred under lubrication is similar to that transferred in the dry condition. However, the features of worn surfaces of polymers under lubrication are different from those in a dry condition. The mechanism of polymer wear under lubrication is discussed on the basis of these findings.


Sign in / Sign up

Export Citation Format

Share Document