Effect of Arc Discharge on Friction and Wear Behaviors of Stainless Steel/Copper-Impregnated Metalized Carbon Couple under Electric Current

2010 ◽  
Vol 150-151 ◽  
pp. 1364-1368 ◽  
Author(s):  
Tao Ding ◽  
Guang Xiong Chen ◽  
Ming Xue Shen ◽  
Min Hao Zhu ◽  
Wei Hua Zhang

Friction and wear tests of stainless steel rubbing against copper-impregnated metalized carbon with electric current were carried on the pin-on-disc tester. The result indicates that arc discharge occurs in the process of experiments, and the intensity of arc discharge of interface increases with increasing of electric current and sliding velocity. As increasing of the arc discharge intensity, friction coefficient shows a tendency of slightly increase. While the rate of copper-impregnated metalized carbon material increase significantly with the increase of arc discharge intensity. Through observing the worn surface morphology of pin samples, it is found that the abrasive wear is dominant at small arc discharge due to worn particles and arc ablation craters, but arc erosion and oxidation wear are the main wear mechanisms in condition of large arc discharge due to arc discharge and its producing high temperature. The materials transfer of contact couple occurs in the process of friction and wear.

2013 ◽  
Vol 423-426 ◽  
pp. 797-800 ◽  
Author(s):  
Tao Ding ◽  
Wen Jing Xuan ◽  
Yu Mei Li ◽  
Shu Fen Xiao

An experimental study on friction and wear properties of carbon strip rubbing against copper contact wire was carried out on a pin-on-disc frictional tester under electric current. The result indicates that the coefficient of friction slowly increases with increasing of electric current. The value of friction coefficient is low, generally not more than 0.125. The wear volume of pin specimen increases with increasing of electric current. The wear volume of pin specimen is very low, generally not more than 0.075g. Through observing the SEM morphology of worn specimens, it can be found that there are obvious pits of arc ablation and traces of melting metal on worn surface. Worn surfaces of the worn specimens are analyzed by an energy dispersive X-ray spectroscopy. It can be observed that the oxidation wear occurs in the frictional process due to arc erosion and significant temperature rise. Therefore the arc erosion and oxidation wear are a main wear mechanism accompanied by materials transferring in the process of electrical sliding friction.


2012 ◽  
Vol 581-582 ◽  
pp. 359-362
Author(s):  
Tao Ding ◽  
Guang Xiong Chen ◽  
Qiu Dong He ◽  
Wen Jing Xuan

Influence of the support stiffness and contact force on friction and wear behaviors of stainless steel rubbing against copper-impregnated metalized carbon under electric current was researched on an improved friction and wear test machine. The result indicates that the support stiffness and the contact force significantly affect the friction coefficient of contact pairs, wear and surface roughness of pin samples. The appropriated support stiffness and contact force can effectively reduce friction material wear of contact couple.


2011 ◽  
Vol 80-81 ◽  
pp. 178-181
Author(s):  
Tao Ding ◽  
G.X. Chen ◽  
Z.G. Xiong ◽  
Li Xie ◽  
C.X. Wu

A serial of experiment studies on the friction and wear behaviors of the carbon strip/copper contact wire under the electric current were carried on the pin-on-disc tester. The results indicated that the tribology performances were remarkably affected by the electric current. The friction coefficient decreases with an increase of electric current. However, the were volume increases with increasing of electric current, and the worn surface of carbon strip become severer and severer with the increasing electric current. Therefore, the electric current play roles of lubrication and accelerating wear in the process of electrical sliding friction. By the analysis of EDX, it is seen that the oxide wear exists in electrical sliding friction process. Observing the worn surfaces of copper pan sample, it is found that the electric current increases the material transfer of carbon strip.


2012 ◽  
Vol 476-478 ◽  
pp. 566-569
Author(s):  
Bao Guo Yuan ◽  
Hai Ping Yu ◽  
Ping Li ◽  
Gui Hua Xu ◽  
Chun Feng Li ◽  
...  

The effects of hydrogen on friction and wear properties of Ti–6Al–4V alloy sliding against GCr15 steel were investigated through dry sliding friction and wear tests in atmosphere at room temperature. Wear mechanism was determined by studying the morphology and chemical element of worn surface using SEM and EDS. Results show that friction coefficient decreases slightly and wear rate increases after hydrogenation. Wear mechanism is discussed.


2017 ◽  
Vol 24 (4) ◽  
pp. 485-494 ◽  
Author(s):  
Iskender Ozsoy ◽  
Adullah Mimaroglu ◽  
Huseyin Unal

AbstractIn this study, the influence of micro- and nanofiller contents on the tribological performance of epoxy composites was studied. The fillers are micro-Al2O3, micro-TiO2, and micro-fly ash and nano-Al2O3, nano-TiO2, and nanoclay fillers. The microfillers were added to the epoxy by 10%, 20%, and 30% by weight. The nanofillers were added to the epoxy by 2.5%, 5%, and 10%. Friction and wear tests were conducted using the pin-on-disc arrangement. Tribo elements consisted of polymer pin and DIN 1.2344 steel counterface disc. A load value of 15 N, a sliding speed of 0.4 m/s, a sliding distance of 2000 m, and dry atmospheric conditions were applied to test conditions. The results show that the friction coefficients and the specific wear rates of the nanofilled composites increase as the filler content increases. For microfiller-filled epoxy composites, these values decrease as filler content increases. The tribological performance of epoxy composites is enhanced by the addition of microfillers, and the higher enhancement is reached with the addition of 30% fly ash filler. Finally, the pin and disc worn surface images show the presence of adhesive and some abrasive wear mechanisms.


1983 ◽  
Vol 27 ◽  
Author(s):  
L. E. Pope ◽  
F. G. Yost ◽  
D. M. Follstaedt ◽  
S.T. Picraux ◽  
J. A. Knapp

ABSTRACTFriction and wear tests on ion-implanted 440C stainless steel discs have been extended to high Hertzian stresses (≤ 3150 MPa). Implantation of 2 × 1015 Ti/mm2 (180–90 keV) and 2 × 1015 C/mm2 (30 keV) into 440C reduces friction (∼40%) and wear (> 80%) for Hertzian stresses as large as 2900 MPa, stresses which significantly exceed the yield strength of 440C (∼1840 MPa). Implantation of 4 × 1015 N/mm2 (50 keV) into 440C reduces friction slightly (∼25%) for Hertzian stresses > 1840 MPa but provides little or no reduction in wear. The amount of Ti remaining in the wear tracks correlates with the reductions in friction and wear. The implantation of Ti and C produces an amorphous surface layer which is believed to reduce friction and wear, whereas N implantation is expected to produce hard nitride particles which probably do not modify the hardness of 440C (KHN = 789) significantly.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Y. M. Shashidhara ◽  
S. R. Jayaram

The friction and wear tests on AISI 1040 are carried out under raw, modified versions of two nonedible vegetable oils Pongam (Pongamia pinnata) and Jatropha (Jatropha curcas) and also commercially available mineral oil using a pin-on-disc tribometer for various sliding distances and loads. A significant drop in friction and wear for AISI 1040 is observed under Pongam and Jatropha raw oil compared to mineral oil, for the complete tested sliding distance and load, increasing the potential of vegetable oil for tribological applications. Stribeck curves are also drawn to understand the regimes of lubrication. Both the vegetable oils showed a clear reduction in the boundary lubrication regimes, leading to an early start of full film lubrication.


2012 ◽  
Vol 472-475 ◽  
pp. 618-621 ◽  
Author(s):  
Li Li Duan ◽  
Xu Ran

Copper-graphite composites were fabricated by spark plasma sintering (SPS) and cold-pressed (CP) processing using a mixture of copper and graphite powders mechanically alloyed. Pin-on-disc wear was used to evaluate the tribological behavior of copper-graphite composites. The results show that the coefficient friction and wear rate decreased considerably with increasing graphite content; with increasing the sintering temperature, the coefficient friction and wear rate just decreased in the same way. XPS analysis of worn surface indicated that better tribological properties are due to a lubricious film covering almost entire worn surface. The presence of this tribolayer improves the friction and wear characteristics when the tribolayer covers almost entire wear surface it effectively restricts metal to metal contact between pin and disc.


2014 ◽  
Vol 8 (1) ◽  
pp. 125-128 ◽  
Author(s):  
Tao Ding ◽  
Wenjing Xuan ◽  
Qiudong He ◽  
Hao Wu ◽  
Wei Xiong

A series of experiments on friction and wear properties of carbon strip rubbing against copper contact wire is performed on high-speed friction and wear tester with electric current. The results show that the friction coefficient is generally maintained between 0.24 and 0.37. In the absence of electric current, the coefficient of friction is higher than that in the presence of electric current. The wear rate of carbon strip materials is generally not more than 0.014g/km. In particular, the wear rate under the electric current of 240 A is 14 times more than that in the absence of electric current. By observing the scar of worn surface with optical microscope, it can be found that there are obvious slip scars and arc erosive pits. The dominated wear mechanisms are abrasive wear and arc erosion in electrical sliding frictional process.


Sign in / Sign up

Export Citation Format

Share Document