Fluid Field Analysis for Cyclone Separator Used on Grain Cleaning

2012 ◽  
Vol 605-607 ◽  
pp. 1369-1371
Author(s):  
Ling Xin Geng ◽  
Li Jian Zhang ◽  
Qing Xiang Shi

Gas velocity in cyclone separator is measured by testing with laser Doppler velocimeter in this paper. The measuring results indicates that tangential velocity, axial velocity, radial velocity of air distribute following some certain rules, reasonable selected structure parameters can improve separating efficiency

2021 ◽  
Author(s):  
Muhammad Ramzan ◽  
Poom Kumam ◽  
Kottakkaran Sooppy Nisar ◽  
Ilyas Khan ◽  
Wasim Jamshed

Abstract In this paper, a numerical study of MHD steady flow due to the rotating disk with chemical reaction was explored. Effect of different parameters such as Schmidt number, chemical reaction parameter, Prandtl number, Suction parameter, heat absorption/generation parameter, Nano-particle concentration, Reynold number, Magnetic parameter, skin friction, shear stress, temperature distribution, Nusselt number, mass transfer rate, radial velocity, axial velocity, and tangential velocity was analyzed and discussed. For the simplification of non-linear partial differential equations (PDEs) into the nonlinear ordinary differential equation (ODEs), the method of Similarity transformation was employed, and the resulting partial differential equation was solved by using finite difference method through MATLAB programming. This work's remarkable finding is that with the expansion of nanoparticle concentration radial velocity, tangential velocity and temperature of the fluid was enhanced but reverse reaction for axial velocity. Furthermore, the present results are found to be in excellent agreement with previously published work.


1973 ◽  
Vol 95 (2) ◽  
pp. 91-96 ◽  
Author(s):  
D. C. Wisler ◽  
P. W. Mossey

The laser Doppler velocimeter, a new instrument capable of making nondisturbing gas velocity measurements, was used to investigate the flowfield within the rotating blade row of a low speed axial compressor. The velocimeter operates by measuring the transit time of a seed particle across interference fringes produced at the intersection of a split and crossed laser beam. The velocity (magnitude and direction) measurements made with the laser at the rotor inlet and discharge generally agreed within 2 to 3 per cent with measurements made with a hot film anemometer, pitot-static probe and wedge and tuft angle probes. Detailed flowfield measurements within the rotor passage were then obtained and compared with the analytical results from a potential flow model. This technique shows promise in making detailed flow measurements within high speed fans, compressors, turbines and nozzles, including the mapping of shock structures.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Rao Yongchao ◽  
Wang Shuli ◽  
Zhou Shidong ◽  
Li Entian ◽  
Liu Wenming

An experimental study was conducted to get more insight into the flowing characteristics of single phase spiral flow in the horizontal pipe by the use of a laser Doppler velocimeter (LDV). Water was used as the working medium, and the spiral motion was produced by a vane. The vanes with different spiral angles and vane area were self-made. Influence of flow attenuation, average Reynolds number, spiral angle, and vane area on axial velocity distribution and tangential velocity distribution were studied. Turbulence intensity distribution was studied, and the spiral strength attenuation law was analyzed. The experimental results show that the vane is an efficient spiral device with low pressure drop, and it is used in pipeline, natural gas hydrate formation, and so on.


Author(s):  
Mohammad A. Hossain ◽  
Sarzina Hossain

This work is focused on a numerical investigation of a turbulent axi-symmetric round jet in order to incorporate the knowledge of turbulence. Flow field analysis of a turbulent jet is one of the major research areas in recent years as turbulent jet dictates the interaction between fluid and other physical phenomena. Heat transfer, natural convection, frame propagation all depend on the behavior of turbulent jet. The mass and momentum transfer phenomena governs the flow field of the jet. A two dimensional pressure based Navier-stock solver is used to resolve the flow parameter of a turbulent round jet. Around One hundred twenty five thousand quadratic mesh elements are used for the simulation. A Mesh independency test has been done before resolving results. Characteristic flow parameters such as mean axial velocity, mean radial velocity distribution, turbulent kinetic energy, turbulent intensity, the turbulent dissipation rate are determined and presented. Similarity solution for mean axial velocity distribution and mean radial velocity distribution at different axial location are calculated and compared with experimental data. The result shows good agreement with experimental data.


2012 ◽  
Vol 468-471 ◽  
pp. 25-29 ◽  
Author(s):  
Mohd Faizal ◽  
Md Seri Suzairin ◽  
Mohd Al-Hafiz ◽  
Vijay Raj Raghavan

This paper presents computational fluid dynamics (CFD) studies to characterize air velocity distribution for various bed configurations in a swirling fluidized bed (SFB). Unlike conventional fluidized beds, a SFB provides radial mixing which is desirable is fluidization. Three velocities components were observed, the tangential velocity, radial velocity and axial velocity. These velocities were created as a result of using annular blade type distributor which mimics the turbine blades. In actual industrial applications, the axial velocity will create fluidization while the tangential velocity provides swirling effect. The presence of radial velocity can be explained as a consequence of centrifugal force generated by the swirling gas. Understanding these velocity distributions will enable optimization of the annular blade distributor design towards a high efficient fluidized bed system.


2014 ◽  
Vol 933 ◽  
pp. 250-254 ◽  
Author(s):  
Yue Juan Yan ◽  
Zun Ce Wang ◽  
Yan Xu Shang ◽  
Sen Li ◽  
Yan Xu

A new style single outlet downhole hydrocyclone desander with spiral deflectors was designed according to the working characters of downhole desander, which combined hydrocyclone separation and sediment separation. Numerical simulation was conducted to analysis effect of produced liquid viscosity on flow characteristics and separating property. The results show that the tangential velocity of hydrocyclone desander decreases rapidly and the axial velocity and radial velocity of hydrocyclone desander changes slightly when the produced liquid viscosity changes in the range of 1.5mPa·s ~ 30mPa·s. Separation efficiency drops sharply and pressure drop decreases slightly with the increasing of produced liquid viscosity.


1998 ◽  
Vol 11 (1) ◽  
pp. 574-574
Author(s):  
A.E. Gómez ◽  
S. Grenier ◽  
S. Udry ◽  
M. Haywood ◽  
V. Sabas ◽  
...  

Using Hipparcos parallaxes and proper motions together with radial velocity data and individual ages estimated from isochones, the velocity ellipsoid has been determined as a function of age. On the basis of the available kinematic data two different samples were considered: a first one (7789 stars) for which only tangential velocities were calculated and a second one containing 3104 stars with available U, V and W velocity components and total velocities ≤ 65 km.s-1. The main conclusions are: -Mixing is not complete at about 0.8-1 Gyr. -The shape of the velocity ellipsoid changes with time getting rounder from σu/σv/σ-w = 1/0.63/0.42 ± 0.04 at about 1 Gyr to1/0.7/0.62 ±0.04 at 4-5 Gyr. -The age-velocity-dispersion relation (from the sample with kinematical selection) rises to a maximum, thereafter remaining roughly constant; there is no dynamically significant evolution of the disk after about 4-5 Gyr. -Among the stars with solar metallicities and log(age) > 9.8 two groups are identified: one has typical thin disk characteristics, the other is older than 10 Gyr and lags the LSR at about 40 km.s-1 . -The variation of the tangential velocity with age(without selection on the tangential velocity) shows a discontinuity at about 10 Gyr, which may be attributed to stars typically of the thick disk populations for ages > 10 Gyr.


1951 ◽  
Vol 3 (2) ◽  
pp. 133-144 ◽  
Author(s):  
J. W. Railly

SummaryA method is described whereby, at any point in an infinite parallel annulus, the approximate axial velocity due to a single row of high aspect ratio blades may be calculated from a knowledge of the conditions of flow adjacent to the blades. The method is based on the assumption of a simplified expression for the radial velocity, being the product of an unknown function of the radius and an exponential term independent of the radius containing an undetermined constant; the function and the undetermined constant are calculated by reference to the conditions of flow in the plane of the row considered. The flow due to any number of rows is then obtained by summing the radial velocity fields due to each row and obtaining the axial velocities by integration of the equation of continuity.The solution of the problem with infinitely many rows is shown to have a simple form by virtue of the fact that the flow (provided that the velocities remain finite) settles down to a pattern which is periodic by one stage pitch.


Sign in / Sign up

Export Citation Format

Share Document