The Research of Subspan Oscillation and Configuration of Spacer for Transmission Line

2012 ◽  
Vol 614-615 ◽  
pp. 1855-1861
Author(s):  
Yu Xian Di ◽  
Kuan Jun Zhu ◽  
Cao Lan Liu

Based on the summarization of domestic and foreign experience, the computational method of spacer configuration was developed in order to depress sub-span oscillation principally. The requirements of the reverse recovery characteristics were considered. The computer-aided calculation procedures were programmed. The finite element analysis model of sub-span oscillation for cable-spacer system was established. The inherence modal and amplitude for sub-span oscillation of bundled transmission lines were calculated by using numerical simulation method. The dynamic configurations were analyzed by using the parameters of the cable and spacer obtained from vibration testing.

2012 ◽  
Vol 24 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Yu-Chi Chen ◽  
Wen-Ching Ko ◽  
Han-Lung Chen ◽  
Hsu-Ching Liao ◽  
Wen-Jong Wu ◽  
...  

We propose a model to give us a method to investigate the characteristic three-dimensional directivity in an arbitrarily configured flexible electret-based loudspeaker. In recent years, novel electret loudspeakers have attracted much interest due to their being lightweight, paper thin, and possessing excellent mid- to high-frequency responses. Increasing or decreasing the directivity of an electret loudspeaker makes it excellent for adoption to many applications, especially for directing sound to a particular area or specific audio location. Herein, we detail a novel electret loudspeaker that possesses various directivities and is based on various structures of spacers instead of having to use multichannel amplifiers and a complicated digital control system. In order to study the directivity of an electret loudspeaker based on an array structure which can be adopted for various applications, the horizontal and vertical polar directivity characteristics as a function of frequency were simulated by a finite-element analysis model. To validate the finite-element analysis model, the beam pattern of the electret loudspeaker was measured in an anechoic room. Both the simulated and experimental results are detailed in this article to validate the various assertions related to the directivity of electret cell-based smart speakers.


2013 ◽  
Vol 859 ◽  
pp. 143-148
Author(s):  
Yang Xu ◽  
Ding Ling Li ◽  
Li Peng ◽  
Yan Xiao ◽  
Yi Hua Nie

The finite element analysis model was built as the real scale for mortar arch framework slope protection, and the displacement and strain at different points were collected by vertical loading pressure. So the mechanical mechanism can be studied, and the analysis was done between calculation results and testing results of solid miniature model. The studying results show that the point on the arch foot is the worst stress place for each arch, and the total displacement increase nonlinear as the distance from the slope top increases, and the bump phenomenon exists in the bottom of slope, the points are likely to be broken.


2013 ◽  
Vol 871 ◽  
pp. 347-351
Author(s):  
Dun Cai Lei ◽  
Jin Yuan Tang

A lecture on the method to compute the the stress of V-tooth coupling under the actual operating conditions. the finite element analysis model of V-tooth coupling under the preload, axial load and torsion was established by used of the software ABAQUS,and the distribution of the bending stress at the root was obtained. The analytical method to compute the bending stress of V-tooth disk is deduced based on the basic principle of material mechanics, and the relative error within 10% compared with the results of finite element analysis.The paper work provide the reference for the precision design of V-tooth coupling.


2012 ◽  
Vol 204-208 ◽  
pp. 1748-1753
Author(s):  
Jing Cai ◽  
Zong Bao Yue

In the airport pavement design, the critical load position has the guiding significance for the airport pavement slab design. The finite element analysis model of rigid airport pavement is built, and 2-slab model and 9-slab model are analyzed. The corresponding load positions are obtained when the maximum stress and the maximum vertical displacement happen


2011 ◽  
Vol 704-705 ◽  
pp. 155-159 ◽  
Author(s):  
Jun Hong Li ◽  
Hui Yu

The stretch reducing process is the last hot deformation process of the hot-rolled seamless steel tube’s production. Its role is to decrease the tube’s diameter under the large tension and expand the range of product specifications. But the stretch reducing process often results in wall thickness tolerance at the head and end of the tube. In order to solve the problem, a 3D elastic-plastic finite element analysis model was established to simulate the stretch reducing process of φ159 unit. Based on this, the tube’s wall thickness distribution was studied and the parameters of sharpen rolling process was put forward. Numerical simulation results indicate that with the parameters of sharpen rolling process, the length of wall thickness tolerance was shorten and the rate of finished products was proved.


Author(s):  
Constantinos Franceskides ◽  
Michael Gibson ◽  
Peter Zioupos

Patient-specific computational models are powerful tools which may assist in predicting the outcome of invasive surgery on the musculoskeletal system, and consequently help to improve therapeutic decision-making and post-operative care. Unfortunately, at present the use of personalized models that predict the effect of biopsies and full excisions is so specialized that tends to be restricted to prominent individuals, such as high-profile athletes. We have developed a finite element analysis model to determine the influence of the location of an ellipsoidal excision (14.2 mm × 11.8 mm) on the structural integrity of a human skull when exposed to impact loading, representing a free fall of an adult male from standing height. The finite element analysis model was compared to empirical data based on the drop-tower testing of three-dimensional-printed physical skull models where deformations were recorded by digital image correlation. In this bespoke example, we found that the excision site did not have a major effect on the calculated stress and strain magnitudes unless the excision was in the temporal region, where the reduction in stiffness around the excision caused failure within the neighboring area. The finite element analysis model allowed meaningful conclusions to be drawn for the implications of using such a technique based on what we know about such conditions indicating that the approach could be both clinically beneficial and also cost-effective for wider use.


2013 ◽  
Vol 477-478 ◽  
pp. 435-438
Author(s):  
Yong Liang Deng ◽  
Ying Lu ◽  
Qi Ming Li ◽  
Kang An ◽  
Shuai Niu

In order to study the stability of rock-socketed piles in landslide control project, this paper took a practical engineering as example, employed the ANASYS software platform as the implementation tool to establish the finite element analysis model. In this analysis, the Drucker-Prager criterion was selected and several differentiated models were established to research the influence of different socketed depth on rock stability. The result indicates that when the embedding depth is constant, the deformation of rock is growing with the increasing of load. When entering into the plastic response, the crack eventually developed into plastic zone around the rock-socketed pile; the adverse effects of the bottom rock would be smaller complying with the deeper of the pillar embedding into the rock; the cost increases with depth of embedded part in practical engineering, according to this research, it is economical and reasonable to choose triple pile diameter as the embedded depth.


2014 ◽  
Vol 1033-1034 ◽  
pp. 462-465
Author(s):  
Yong Huang ◽  
De Jun Ma ◽  
W. Chen ◽  
Jia Liang Wang ◽  
Liang Sun

Based on the finite element analysis method to simulate the O-P hardness. Taking S45C steel as an example, comparative analysis of O-P hardness of finite element simulation and O-P hardness of instrument indentation hardness experiment, results show that difference of S45C steel’s O-P hardness between the finite element simulation and real experiment is-2.62% Accordingly seen, O-P hardness can be obtained by finite element numerical simulation method, it’s a possible way to study relations between O-P hardness and Vickers hardness based on finite element numerical simulation techniques.


2014 ◽  
Vol 602-605 ◽  
pp. 1590-1593
Author(s):  
Han Xin Chen ◽  
Shi Qi Yang

With the continuous development of the ultrasonic detection technology, ultrasonic time of flight diffraction (TOFD) method has been widely applied. The paper investigated the TOFD technique in the detection of natural defects. TOFD detection experiment is established in Lab. The finite element analysis simulation of A-scan signal and ultrasonic TOFD technique in the detection of the longitudinal arrangement of pores defects within the weld specimen transmission are studied. The feasibility and correctness of the finite element analysis model are verified by comparing the experimental signals with the simulation signals.


Sign in / Sign up

Export Citation Format

Share Document