Coupled Heat Transfer Analysis of Piston Crown, Piston Rings and Cylinder Liner

2012 ◽  
Vol 614-615 ◽  
pp. 204-207
Author(s):  
Ji Wu ◽  
Shu Lin Duan ◽  
Zhan Hua Wu ◽  
Li Dui Wei ◽  
Hui Xing

MAN Diesel’s 6S50MC-C disel is a two-stroke marine diesel engine. As the boundary conditions of temperature field distribution, the mean temperature and mean heat transfer coefficient are calculated firstly. The coupled heat transfer of piston crown, piston rings and cylinder liner are analyzed. The steady temperature field and the transient heat transfer under starting condition of diesel engine are obtained in ANSYS. Maximum temperature is 413.55°C in the top surface edge of the piston crown. 59.5% of the total heat from high-temperature fuel gas heat is absorbed by the cooling oil. The temperature of piston crown is effectively reduced by shaker cooling. The load of diesel engine should be increased slowly to prevent stress concentration. To reduce the destructive effect, enhancing cooling and warming up the main engine are requested.

2012 ◽  
Vol 569 ◽  
pp. 610-614
Author(s):  
Guan Xiong Wang ◽  
Hai Bo Chen ◽  
Zhao Cheng Yuan ◽  
Wei Lu

Today CFD is an important tool for engineers in the automotive industry. To simulate and optimize the fluid flow and heat transfer in the engine, the research is carried out. The geometric models of a gasoline engine and the cooling water jacket are simplified by Pro/E software firstly. Then solid - liquid coupled heat transfer analysis is done by using CFD software FLUENT. Temperature field distributions in the engine body and the cooling water jacket are obtained. An engine temperature test bench is set up, on which temperature values of key points are measured. The analysis on the errors between the experimental data and the calculation results shows that the temperature distributions in the engine are reasonable and the cooling performance of the water jacket meets the design requirements. The deviations between the experimental data and calculated values on the measuring points are not big, so the calculation method has high accuracy. The data obtained in this experiment can be used as the basis in the following study.


2014 ◽  
Vol 971-973 ◽  
pp. 752-754
Author(s):  
Ya Nan Wang

In the case of each parameter Pistons have been basically provided ,to simulate the temperature field of Diesel Engine Piston, detailing the analysis of diesel engine piston transient heat steady state and heat transfer transient of the calculation process, providing a general simulation method of temperature field in general diesel engine piston.


1998 ◽  
Vol 4 (1) ◽  
pp. 21-42 ◽  
Author(s):  
J. N. Rajadas ◽  
A. Chattopadhyay ◽  
N. Pagaldipti ◽  
S. Zhang

A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
J. L. González-Santander ◽  
G. Martín

We consider the solutions found in the literature for heat transfer in surface grinding, assuming a constant heat transfer coefficient for the coolant acting on the workpiece surface and a constant or linear heat flux profiles entering into the workpiece. From the integral form of the time-dependent temperature field reached in the workpiece, assuming the previous conditions, we prove that the maximum temperature always occurs in the stationary regime on the workpiece surface within the contact zone between the wheel and the workpiece. This result assures a very rapid method for the theoretical computation of the maximum temperature.


Author(s):  
Yankun Jiang ◽  
Zhien Liu ◽  
Rolf D. Reitz ◽  
Zheling Dong ◽  
Xiaoming Ye

A transient heat transfer model for the coupling 3-D moving piston assembly-liner system has been successfully improved for predicting temperature distributions in the components of internal combustion engine chamber. In the model the effect of the 3-D friction heat generated at the piston ring/cylinder liner interfaces and the multi-dimensional lubricant film thickness between the piston rings and the liner has been taken into account. A directly coupled finite element method (FEM) is employed in the model for establishing the heat transfer relation among the moving piston assembly-cylinder liner components. A 3-D discrete model of the coupling system is formulated, which includes the piston rings, piston, liner and cylinder. Due to the complexity of the temperature stiffness matrix, a sparse matrix data structure is employed in the model to save the memory and calculation time. Finally, the 3-D coupling heat transfer model has been used to analyze heat transfer processes in a gasoline engine.


Author(s):  
Abas Abdoli ◽  
George S. Dulikravich

Multi-floor networks of straight-through liquid cooled microchannels have been investigated by performing conjugate heat transfer in a silicon substrate of size 15×15×1 mm. Two-floor and three-floor cooling configurations were analyzed with different numbers of microchannels on each floor, different diameters of the channels, and different clustering among the floors. Thickness of substrate was calculated based on number of floors, diameter of floors and vertical clustering. Direction of microchannels on each floor changes by 90 degrees from the previous floor. Direction of flow in each microchannel is opposite of the flow direction in its neighbor channels. Conjugate heat transfer analysis was performed by developing a software package which uses quasi-1D thermo-fluid analysis and a 3D steady heat conduction analysis. These two solvers are coupled through their common boundaries representing surfaces of the cooling microchannels. Using quasi-1D solver significantly decreases overall computing time and its results are in good agreement with 3D Navier-Stokes equations solver for these types of application. Multi-objective optimization with modeFRONTIER software was performed using response surface approximations and genetic algorithm. Maximizing total amount of heat removed, minimizing coolant pressure drop, minimizing maximum temperature on the hot surface, and minimizing non-uniformity of temperature on the hot surface were four simultaneous objectives of the optimization. Pareto-optimal solutions demonstrate that thermal loads of 800 W cm−2 can be effectively managed with such multi-floor microchannel cooling networks. Two-floor microchannel configuration was also simulated with 1,000 W cm−2 uniform thermal load and shown to be feasible.


2020 ◽  
Vol 33 ◽  
pp. 778-783
Author(s):  
C. Thiagarajan ◽  
M. Prabhahar ◽  
S. Prakash ◽  
J. Senthil ◽  
M. Saravana Kumar

1978 ◽  
Vol 20 (6) ◽  
pp. 345-352 ◽  
Author(s):  
S. L. Moore ◽  
G. M. Hamilton

Miniature pressure and film thickness transducers mounted in the cylinder liner of a diesel engine have been used to study the lubrication of piston rings. The method of using the gauges to determine oil starvation in the inlet of the rings is described and results from a working engine are presented. Calculations for both starved and fully flooded rings have been carried out and are compared with the measured results.


Sign in / Sign up

Export Citation Format

Share Document