Radiotracer study of piston rings and cylinder liner wear in a diesel engine

Wear ◽  
1962 ◽  
Vol 5 (3) ◽  
pp. 254
1978 ◽  
Vol 20 (6) ◽  
pp. 345-352 ◽  
Author(s):  
S. L. Moore ◽  
G. M. Hamilton

Miniature pressure and film thickness transducers mounted in the cylinder liner of a diesel engine have been used to study the lubrication of piston rings. The method of using the gauges to determine oil starvation in the inlet of the rings is described and results from a working engine are presented. Calculations for both starved and fully flooded rings have been carried out and are compared with the measured results.


1974 ◽  
Vol 188 (1) ◽  
pp. 253-261 ◽  
Author(s):  
G. M. Hamilton ◽  
S. L. Moore

A capacity gauge has been designed for operating in the conditions of a working engine. The method of using it for determining the oil-film thickness and piston-ring profile is described. Oil-film thicknesses in the range 0·4-2·5 μm between the piston rings and the cylinder liner have been observed. Their variation with speed, load and temperature has been measured and it is concluded that their behaviour is essentially hydrodynamic.


2012 ◽  
Vol 614-615 ◽  
pp. 204-207
Author(s):  
Ji Wu ◽  
Shu Lin Duan ◽  
Zhan Hua Wu ◽  
Li Dui Wei ◽  
Hui Xing

MAN Diesel’s 6S50MC-C disel is a two-stroke marine diesel engine. As the boundary conditions of temperature field distribution, the mean temperature and mean heat transfer coefficient are calculated firstly. The coupled heat transfer of piston crown, piston rings and cylinder liner are analyzed. The steady temperature field and the transient heat transfer under starting condition of diesel engine are obtained in ANSYS. Maximum temperature is 413.55°C in the top surface edge of the piston crown. 59.5% of the total heat from high-temperature fuel gas heat is absorbed by the cooling oil. The temperature of piston crown is effectively reduced by shaker cooling. The load of diesel engine should be increased slowly to prevent stress concentration. To reduce the destructive effect, enhancing cooling and warming up the main engine are requested.


2018 ◽  
Vol 70 (4) ◽  
pp. 687-699 ◽  
Author(s):  
Thomas Wopelka ◽  
Ulrike Cihak-Bayr ◽  
Claudia Lenauer ◽  
Ferenc Ditrói ◽  
Sándor Takács ◽  
...  

Purpose This paper aims to investigate the wear behaviour of different materials for cylinder liners and piston rings in a linear reciprocating tribometer with special focus on the wear of the cylinder liner in the boundary lubrication regime. Design/methodology/approach Conventional nitrided steel, as well as diamond-like carbon and chromium nitride-coated piston rings, were tested against cast iron, AlSi and Fe-coated AlSi cylinder liners. The experiments were carried out with samples produced from original engine parts to have the original surface topography available. Radioactive tracer isotopes were used to measure cylinder liner wear continuously, enabling separation of running-in and steady-state wear. Findings A ranking of the material pairings with respect to wear behaviour of the cylinder liner was found. Post-test inspection of the cylinder samples by scanning electron microscopy (SEM) revealed differences in the wear mechanisms for the different material combinations. The results show that the running-in and steady-state wear of the liners can be reduced by choosing the appropriate material for the piston ring. Originality/value The use of original engine parts in a closely controlled tribometer environment under realistic loading conditions, in conjunction with continuous and highly sensitive wear measurement methods and a detailed SEM analysis of the wear mechanisms, forms an intermediate step between engine testing and laboratory environment testing.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Siqi Ma ◽  
Wenbin Chen ◽  
Chengdi Li ◽  
Mei Jin ◽  
Ruoxuan Huang ◽  
...  

This work investigates the effect of convexity position of ring barrel surface on the wear properties and scuffing resistance of the Cr–Al2O3 coated piston rings against with the CuNiCr cast iron cylinder liner. The scuffed surface morphology and elements distribution as well as the oil film edge were analyzed to explore the influencing mechanism of the convexity position on the scuffing resistance. The results show that the convexity offset rate on the barrel surface of the ring has no noticeable influence on both friction coefficient and wear loss near the dead points, but a suitable convexity position will result in the improved scuffing resistance. The shape of the barrel face not only affects the worn area on the ring, but also determines the oil film wedge and pressure distribution, consequently influences the scuffing resistance.


2015 ◽  
Vol 39 (11) ◽  
pp. 1131-1136
Author(s):  
Jin-Yeol Kim ◽  
Jae-Hoon Kim ◽  
Kwang-Keun Oh ◽  
Seung-Hak Lee ◽  
Joon-Yong Chang

Sign in / Sign up

Export Citation Format

Share Document