Numerical Study on Three-Dimensional Steady-State Temperature Field of a Gasoline Engine

2012 ◽  
Vol 569 ◽  
pp. 610-614
Author(s):  
Guan Xiong Wang ◽  
Hai Bo Chen ◽  
Zhao Cheng Yuan ◽  
Wei Lu

Today CFD is an important tool for engineers in the automotive industry. To simulate and optimize the fluid flow and heat transfer in the engine, the research is carried out. The geometric models of a gasoline engine and the cooling water jacket are simplified by Pro/E software firstly. Then solid - liquid coupled heat transfer analysis is done by using CFD software FLUENT. Temperature field distributions in the engine body and the cooling water jacket are obtained. An engine temperature test bench is set up, on which temperature values of key points are measured. The analysis on the errors between the experimental data and the calculation results shows that the temperature distributions in the engine are reasonable and the cooling performance of the water jacket meets the design requirements. The deviations between the experimental data and calculated values on the measuring points are not big, so the calculation method has high accuracy. The data obtained in this experiment can be used as the basis in the following study.

2011 ◽  
Vol 52-54 ◽  
pp. 1057-1061
Author(s):  
Tao Nie ◽  
Wei Qiang Liu

To obtain temperature distribution in regenerative-cooled liquid propellant rocket nozzle quickly and accurately, three-dimensional numerical simulation employed using empirical formulas. A reduced one-dimensional model is employed for the coolant flow and heat transfer, while three dimensional heat transfer model is used to calculate the coupling heat transfer through the wall. The geometrical model is subscale hot-firing chamber. The numerical results agree well with experimental data, while temperature field in nozzle obtained. In terms of computing time and accuracy of results, this method can provide a reference for optimization design and performance estimation.


Author(s):  
A. Sipatov ◽  
L. Gomzikov ◽  
V. Latyshev ◽  
N. Gladysheva

The present tendency of creating new aircraft engines with a higher level of fuel efficiency leads to the necessity to increase gas temperature at a high pressure turbine (HPT) inlet. To design such type of engines, the improvement of accuracy of the computational analysis is required. According to this the numerical analysis methods are constantly developing worldwide. The leading firms in designing aircraft engines carry out investigations in this field. However, this problem has not been resolved completely yet because there are many different factors affecting HPT blade heat conditions. In addition in some cases the numerical methods and approaches require tuning (for example to predict laminar-turbulent transition region or to describe the interaction of boundary layer and shock wave). In this work our advanced approach of blade heat condition numerical estimation based on the three-dimensional computational analysis is presented. The object of investigation is an advanced aircraft engine HPT first stage blade. The given analysis consists of two interrelated parts. The first part is a stator-rotor interaction modeling of the investigated turbine stage (unsteady approach). Solving this task we devoted much attention to modeling unsteady effects of stator-rotor interaction and to describing an influence of applied inlet boundary conditions on the blade heat conditions. In particular, to determine the total pressure, flow angle and total temperature distributions at the stage inlet we performed a numerical modeling of the combustor chamber of the investigated engine. The second part is a flow modeling in the turbine stage using flow parameters averaging on the stator-rotor interface (steady approach). Here we used sufficiently finer grid discretization to model all perforation holes on the stator vane and rotor blade, endwalls films in detail and to apply conjugate heat transfer approach for the rotor blade. Final results were obtained applying the results of steady and unsteady approaches. Experimental data of the investigated blade heat conditions are presented in the paper. These data were obtained during full size experimental testing the core of the engine and were collected using two different type of experimental equipment: thermocouples and thermo-crystals. The comparison of experimental data and final results meets the requirements of our investigation.


2014 ◽  
Vol 532 ◽  
pp. 439-442
Author(s):  
Jing Yang ◽  
Zhen Lu ◽  
Ke Li ◽  
Yi Wang

The fluid-structure interaction (FSI) method is employed to analyze heat transfer of a exhaust manifold with a water jacket. Three different turbulence models are valued to predict their spheres of application. The mutual effect on complex flow distribution and heat transfer with and without transition is also considered respectively. The results show that reasonable turbulence model and transition will contribute to a better numerical precision of temperature distribution. Considering transition will have a impact on the design of novel exhaust manifold of high speed gasoline engine. In addition, numerical results can be referred to improve the structure.


2021 ◽  
pp. 266-266
Author(s):  
Ceren Hasgül ◽  
Gülşah Çakmak

In this study, the effect of the design on the heat transfer is numerically investigated by using the "wavy inner tube" in a double-pipe heat exchanger. A wavy inner tube was used in the design to give a turbulent effect to the fluid along the inner tube of a double tube heat exchanger. In numerical study, ANSYS 12.0 Fluent code program was used, and the basic protection equations were solved for steady-state, three-dimensional and turbulent flow conditions. The study was examined at Reynolds numbers ranging from 2700 to 5300. The obtained results were compared with the experimental data performed under the same conditions. As a result of this comparison, after it was seen that the results obtained from the numerical analysis and the experimental results were compatible with each other, the wave number of the inner tube was increased and analyzed with the ANSYS fluent code program. When the data obtained as a result of the analyzes were evaluated, it was seen that the highest heat transfer was obtained from the 16 wave tube heat exchanger, which has the highest number of waves and under counter flow conditions. The increase in heat transfer increased by 270% compared to the straight tube.


Author(s):  
Kasem Eid Ragab ◽  
Lamyaa El-Gabry

Abstract In the current study, a numerical analysis was performed for the heat transfer over the surface of nozzle guide vanes (NGVs) using three-dimensional computational fluid dynamics (CFD) models. The investigation has taken place in two stages: the baseline nonfilm-cooled NGV and the film-cooled NGV. A finite volume based commercial code was used to build and analyze the CFD models. The investigated annular cascade has no heat transfer measurements available; hence in order to validate the CFD models against experimental data, two standalone studies were carried out on the NASA C3X vanes, one on the nonfilm-cooled C3X vane and the other on the film-cooled C3X vane. Different modeling parameters were investigated including turbulence models in order to obtain good agreement with the C3X experimental data; the same parameters were used afterward to model the industrial NGVs.


2012 ◽  
Vol 516-517 ◽  
pp. 107-110
Author(s):  
Tao Nie ◽  
Wei Qiang Liu

By the use of the map of the thermal resistance among volume cells, we establish a coupled heat transfer model of the hot gas, chamber wall and coolant. A reduced one-dimensional model was employed for the coolant flow and heat transfer, and three dimensional heat transfer model was used to calculate the coupling heat transfer through the wall, considering heat transfer at circumferential direction, axial direction and radial direction. Based on the study the mechanism of the cooling structure heat transfer, the computing model was employed and achieved the rule of heat flux and temperature of gas wall. Simultaneously, influence of different cooling structure was performed. The results indicated that the cooling structure with raised structure could better reduce the temperature of the chamber wall.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
G. L. Arunkumar ◽  
Balachandra P. Shetty ◽  
R. K. Mishra

Abstract This paper presents a computational method to investigate cooling performance of NASA-C3X cascade vane coated with thermal barrier coating (TBC), for which experimental data are available. The vane was cooled internally by air flows through radially oriented 10 channels. A three-dimensional conjugate heat transfer simulation has been performed which allows the conduction-convection on metal vane by eliminating need of multiple boundary solutions. The predicted aerodynamic and thermal loads with the effect of turbulent intensity is found to be good agreement with experimental data and inclusion of TBC leads to quantitative reduction in vane metal temperature.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
G. L. Arunkumar ◽  
Balachandra P. Shetty ◽  
R. K. Mishra

AbstractThis paper presents a computational method to investigate cooling performance of NASA-C3X cascade vane coated with thermal barrier coating (TBC), for which experimental data are available. The vane was cooled internally by air flows through radially oriented 10 channels. A three-dimensional conjugate heat transfer simulation has been performed which allows the conduction-convection on metal vane by eliminating need of multiple boundary solutions. The predicted aerodynamic and thermal loads with the effect of turbulent intensity is found to be good agreement with experimental data and inclusion of TBC leads to quantitative reduction in vane metal temperature.


Sign in / Sign up

Export Citation Format

Share Document