Increase of Fatigue on Piston and Connecting Rod in Using Supercharger

2012 ◽  
Vol 622-623 ◽  
pp. 1243-1247
Author(s):  
Shahed Torkamandi ◽  
Farhad Asadi ◽  
Gholamhasan Payganeh

This research deals with analysis the fatique and the failure of piston engine using FEA.The objective of this research is to develop the geometry of piston engine using solidwork software and to investigate the maximum stress using stress analysis techniques to predict the failure of piston and connecting rod and identify the critical locations of the components of EF7 engine with supercharger and without supercharger. The finite element model of the components was analyzed the static stress with linear material model . first we discuss the amount of increased pressure in cylinder by supercharger and turbocharger then the influence of the inlet air pressure on the naturall aspirated engine which the main parts of its engine are not reinforced is taken account,then the result is showed the stress is increased by quantity of 273 MPA on piston and connecting rod which make the increase of fatigue on pistons and connecting rod and decrease in its period of working.The results can also significantly reduce the cost to produce the piston,and improve product reliability and improve the fatique strength and durability.

2015 ◽  
Vol 732 ◽  
pp. 337-340
Author(s):  
Jakub Antoš ◽  
Václav Nežerka ◽  
Pavel Tesárek

In order to develop a constitutive material model and to verify its consistency when implemented in a computational code, it is necessary to understand the material and to carry out a comprehensive experimental analysis. This can be a challenging task in the case of composite materials and structures, such as masonry, when using conventional measurements. Strain gauges and allow recording strains at a limited number of discrete points and do not provide sufficient amount of data, thus increasing the cost of the analysis. From that reason a full-field non-contact measurements, such as Digital Image Correlation (DIC), became very popular and valuable for analysis of structures subjected to mechanical loading and precise detection of the onset of strain localization. The presented study deals with tracking the strain localization using DIC in the case of masonry piers loaded by the combination of bending and compression. In such case the strain localizes into more compliant mortar joints while the complete collapse occurs when the masonry blocks fail to transfer tensile stress due to transversal expansion. The obtained data will be used for the validation of a finite element model to predict the behavior of masonry structures.


2011 ◽  
Vol 143-144 ◽  
pp. 536-540
Author(s):  
Xu Dong Yang ◽  
Liang Liang Jin ◽  
Jia Chun Li ◽  
Dong Sun

Coal mine rescue capsules, whose structural strength defines miners' safety directly, are becoming important equipments for miners' underground escaping. In order to improve the rescue capsule's strength, in this study the finite element model was established in ABAQUS environment, and the influence on rescue capsule made by the pressure of gas explosion was obtained by using explicit integration method. The maximum stress of rescue capsule appears at the corner where it has stress singularity and the central part of the stiffeners where the stress reached the yield strength. But the overall stress is within the allowable range.


2014 ◽  
Vol 1078 ◽  
pp. 266-270
Author(s):  
Yu Feng Shu ◽  
Yong Feng Zheng

This paper establishes the finite element model of reachstacker spreader, makes static strength calculation under eight typical operating conditions with rated load, based on the calculation results, it points out the weaknesses of spreader and gives some corresponding improvement measures for the drawbacks. Further analysis shows that the maximum stress of improved spreader mechanism has reduced 10.1%, which demonstrates the effectiveness of improvements.


Author(s):  
Guowei Cao ◽  
Zhiping Chen ◽  
Wenjing Guo

Large-scale oil tanks are being studied all along because they have a series of advantages. For example, they can reduce the cost of manufacturing and management of the facilities, and save land. So the volume of oil tanks becomes larger and larger during their development. However, without on-site heat treatment, the thickness of the shell of traditional oil tanks is restricted to 200,000 m3. In this paper, a new structure named Ultra-large Hydraulic-Balance oil tank with double-shell was put forward. With the method of hydraulic-balance, oil tanks of this structure could be larger than 200,000 m3. Besides expounding the working principle in detail, a 200,000 m3 oil tank with double-shell was also designed in the paper according to API 650, and the finite element model was used to analyze the stress including intensity and distribution of both shells in order to test and verify its security. Furthermore, its economy was analyzed by comparing with traditional oil tanks. Finally, the problem caused by the difference of liquid lever as well as was discussed. Results show that Ultra-large Hydraulic-Balance oil tank with double-shell owned advantages including rational construction, economy and easy manufacturing.


Author(s):  
Davide Girardi ◽  
Edoardo Marconi ◽  
Matteo Massaro

Abstract The application of numerical simulation to wearable airbags for motorcyclists is relatively recent and only few works about this topic can be found in the literature. This research uses multi-physics simulation to analyse a new wearable airbag geometry, primarily designed to protect the shoulders of motorcycle riders, with the aim of assessing the effect of inflation pressure on the protection performance. The finite element model of the airbag employs a simple linear-isotropic material model, calibrated though the comparison between experimental and numerical outcomes of a drop test, together with the analysis of the airbag inflated geometry. The finite element model of the wearable device is then fitted to a dummy model and a human body model, in order to be used in a parametric analysis. Two set-ups are considered. The first is a thorax impact test, used to assess the effect of inflation pressure on chest protection. A modification to the bag geometry is also proposed and tested on this configuration. The second set-up is a shoulder impact test, used to assess the effect of inflation pressure on shoulder protection. In both tests an optimal inflation pressure can be found, but the maximization of shoulder protection proved more critical and should therefore drive the choice of this parameter.


1996 ◽  
Vol 118 (1) ◽  
pp. 154-157 ◽  
Author(s):  
P. Y. Shim ◽  
S. Manoochehri

This paper presents a methodology for the generation of optimal shapes of structural members. This work is based on altering the finite element model of the structure by removing or restoring nodes to generate optimum designs subject to constraints on maximum stress value and maintenance of connectivity in the model. A sequential linear programming algorithm is utilized to determine optimum positions of the boundary nodes. Based on the results, at each iteration a binary decision is performed to determine which nodes should be removed or restored. A correction factor is used in this study to compensate for the error caused by linearization of the stress function.


2012 ◽  
Vol 452-453 ◽  
pp. 1365-1369
Author(s):  
Piotr Czop ◽  
Damian Slawik ◽  
Grzegorz Wszołek ◽  
Dawid Jakubowski ◽  
Antoni Skrobol

This paper proposes an analytical tool that supports the design process of a disc spring valve system used in car dampers. The proposed analytical tool obtains a key design characteristic of a valve, which is the flow rate and the corresponding maximum stress level in the stack of plates, as a function of a pressure load. The tool is prepared based on the cases produced by a first-principle model using a finite element approach. The finite element model was calibrated based on experimental results to provide accurate results in the entire range of input parameters.


Infotekmesin ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 93-97
Author(s):  
Sigit Setijo Budi ◽  
Agus Suprihadi ◽  
Syarifudin Syarifudin

The torsion beam is one of the most important parts of an electric car. The torsion beam can accept the loading of vehicle structures statically and dynamically. The movement of the vehicle, such as turning, turning with a bumpy road contour, affects the stress limit that the torsion beam can support. This study aims to simulate the effects of shifts such as deflection and stress on the use of a torsion beam suspension. The method used is a loading simulation using the Finite Element Model (FEM) model. The results showed that the maximum deflection effect occurred in the 2000N loading of 1.5347 mm, while the maximum stress effect occurred in the 2000N loading of 2342.57N.


Author(s):  
Leo A. Carrilho

Abstract This work aims to develop a finite element model of a PWR control rod at operating conditions for stress analysis of the rod cladding. The finite element model simulates a control rod exposed to high operating temperatures and pressure while portions of the rod are irradiated, resulting in accumulated fluence of neutrons by the rod materials. These high temperature and accumulated fluence induce thermal expansion and swelling of the rod materials, especially of the absorber, which may eventually interact with the rod cladding, generating stresses and strains in the wall of the cladding tube. Moreover, if the maximum stress or strain in the tube wall exceeds the design allowable limit, the absorber rod is considered failed. The author creates the control rod finite element model and apply the operating loads on two-dimensional axisymmetric elements to obtain displacements, temperatures, stresses, and strains. The model also includes contact surface elements to evaluate eventual mechanical interactions between absorber and cladding due to thermal expansion and swelling effects. This is a coupled nonlinear static analysis solution that includes thermal expansion effects to calculate temperature distribution and subsequent thermal strains in the absorber rod due to the heat generation rates and coolant temperature; swelling analysis to calculate absorber growth induced by irradiation; and creep analysis to calculate absorber stress relaxation under coolant pressure and temperature. The finite element model is capable of determining whether or not absorber-to-cladding gap closure will occur and if so, calculate maximum stress and strain in the rod cladding associated with mechanical interaction between the two components induced by the operating temperature and thermal fluence loads.


2018 ◽  
Vol 175 ◽  
pp. 03043
Author(s):  
HE Hong ◽  
Li Xiaoqin ◽  
Shenjun Gao

Flexible rubber joint is an important connecting pipe fitting in ship and chemical industry. However, the problems existing in its application, especially the stress distribution for each component of rubber joint structure, were lack of theoretical analysis. Therefore the finite element model of rubber joint was established according to its structure in this study. With the help of software, the stress characteristics of rubber joint under the axial tension and periodic dynamic load were analysed with the standard maximum internal pressure load and flanges bolt pretension together. The calculation results showed that the order of maximum stress in rubber joint components from big to small was: reinforcement ring, cord layer and rubber skeleton. In order to reduce the stress value at the weak area in the rubber components, the angles of the cord were studied and found that when the cord angle were 60°/-60°for 1,3,5/2,4,6 layer respectively, the maximum stress value for the reinforcement ring and cord fabrics were reduced obviously. After the life computation by the software, it was confirmed that the cord angle arrangement 60°/-60°for cord layers could significantly improve the service life of the rubber joint.


Sign in / Sign up

Export Citation Format

Share Document