Comparison Activating Ability of Three Hydrogen Peroxide Activators

2013 ◽  
Vol 641-642 ◽  
pp. 215-218
Author(s):  
Sheng Guo ◽  
De Yi Huang ◽  
Ji Feng She ◽  
Xiang Qun Liang

The bleaching efficiency of hydrogen peroxide can be promoted by using suitable activator. In our research, two methods were applied to compare the activating ability of three activators, TAED (tetraacetylethylenediamine), acetamide and dicyandiamide. The first part was hydrogen peroxide bleaching. TAED was excellent, because the brightness improvement was the maximum; the viscosity was acceptable. Acetamide was an applied activator in peroxide bleaching,for it could get same effects as TAED if the bleaching process had enough time and enough dosage. In the last part our study was about the kinetics of a lignin model compounds, acetovanillone, in peroxide-alone system, TAED/H2O2 system, acetamide/H2O2 system and dicyandiamide/H2O2 system. The rate constant, k and half-life period, t1/2 can be used to compare the rate of oxidation of acetovanilone. Compared to peroxide-alone system, three systems with activator and H2O2 could accelerate the reactions of hydrogen peroxide and acetovanillone. The t1/2 of TAED/H2O2 system was least of them. It was just 1/5 of t1/2 of peroxide-alone system, 1/4 of t1/2 of acetamide/H2O2 system and dicyandiamide/H2O2 system. The activating ability order of activators was: TAED> acetamide> dicyandiamide.

1999 ◽  
Vol 77 (5-6) ◽  
pp. 667-675 ◽  
Author(s):  
Yujun Sun ◽  
Michael Fenster ◽  
Annie Yu ◽  
Richard M Berry ◽  
Dimitris S Argyropoulos

Peroxide bleaching is significantly affected by transition and alkaline earth metals. Isolating the effects of different transition and alkaline earth metals on the reactions of peroxide with different representative lignin structures allows the separation of the positive from the negative contributions of these metal ions. In this work, five monomeric or dimeric phenolic lignin model compounds were treated with alkaline hydrogen peroxide in the absence or presence of Mn2+, Cu2+, Fe3+, and Mg2+. We followed the disappearance of the starting material and the progress of demethylation, radical coupling and oxalic acid formation were followed. Transition metals increased the reactivities of all the lignin model compounds with hydrogen peroxide in the order Mn2+ > Cu2+ > Fe3+, which is the same as the order of activity toward peroxide decomposition while Mg2+ stabilized the system. Demethylation, radical coupling, and oxalic acid formation were all increased by the presence of transition metals in the system and decreased by the addition of Mg2+. The acceleration of the total degree of reaction and of the demethoxylation reactions improves peroxide bleaching, but the increase in the radical coupling reactions can affect the further bleachability of pulp while the increase in the formation of oxalic acid could lead to a greater probability of scaling.Key words: lignins, hydrogen peroxide, peroxide bleaching, reactivity, chemical pulps, metal compounds, alkali treatment, transition metals, delignification.


Holzforschung ◽  
2008 ◽  
Vol 62 (2) ◽  
pp. 169-175 ◽  
Author(s):  
Krishna K. Pandey ◽  
Tapani Vuorinen

Abstract The etherification of phenolic groups has been found to inhibit photodegradation in wood and lignin rich pulps. The precise understanding of kinetics of chemical reaction between lignins or their model compounds and the etherifying agent is the first step for developing a viable modification procedure. In this study, we have investigated the reaction of lignin model compounds (namely, phenol and guaiacol) with propylene oxide in aqueous media. The kinetics of etherification reaction was studied under varying pH conditions in the temperature range 30–60°C. The etherified reaction products were characterized by gas chromatogram-mass spectrum (GC-MS). The extent of etherification of phenols and the rate of chemical reaction was followed by UV-Visible absorption spectroscopy. The reaction between lignin model compounds and propylene oxide was indicated by a rapid reduction in the absorbance accompanied by the development of a new band corresponding to etherified products. The reaction kinetics was investigated at pH ∼12 under the condition of excess concentration of propylene oxide. The reaction followed first order kinetics and rate constants increased linearly with an increase in the temperature and concentration of propylene oxide. The MS fragment data of reaction product support the proposed reaction scheme. The activation energy of the reaction of propylene oxide with phenol and guaiacol, calculated with the Arrhenius equation, was 56.2 kJ mol-1 and 45.4 kJ mol-1, respectively.


Holzforschung ◽  
2003 ◽  
Vol 57 (1) ◽  
pp. 52-88 ◽  
Author(s):  
T. Kishimoto ◽  
J. F. Kadla ◽  
H.-m. Chang ◽  
H. Jameel

Summary In peroxymonosulfuric acid bleaching, the presence of hydrogen peroxide is dependent on the reaction conditions and the conversion ratios used to generate the peroxy acid. Substantial amounts of hydrogen peroxide may be present in the reaction system under certain conditions. An understanding of the reactions of hydrogen peroxide under these conditions would be beneficial. Therefore, several simple lignin model compounds were reacted with acidic hydrogen peroxide, pH 1-3, at 70°C. In all cases the phenolic lignin model compounds reacted much faster than their non-phenolic counterparts. In fact, the extent of reaction was very much dependent on the structure of the lignin model compound. The α-hydroxyl compounds, 4-(1-Hydroxy-ethyl)-2-methoxy-phenol and 1-(3,4-Dimethoxy-phenyl)-ethanol, reacted faster than the corresponding α-carbonyl compounds with both reacting much faster than the aromatic compounds, with simple alkyl substituents. A new reaction mechanism for α-hydroxyl compounds is proposed, in which benzyl carbocation formation is followed by nucleophilic addition of hydrogen peroxide. Unlike the mechanisms proposed in the past, no evidence of aromatic hydroxylation via perhydronium ion was observed. The reactivities were very pH dependent, in that higher reactivity was associated with lower pH. Decreasing pH further increased the amount of condensation products identified, such that condensation was competitive with degradation. These condensation reactions were also present under the Caro's acid bleaching conditions at pH below 2. However, under all conditions the reactivity of acidic peroxide was found to be much less than that of peroxymonosulfuric acid.


Holzforschung ◽  
1999 ◽  
Vol 53 (3) ◽  
pp. 292-298 ◽  
Author(s):  
M. Ragnar ◽  
T. Eriksson ◽  
T. Reitberger

Summary Using different independent methods, the kinetics of ozone consumption and the initial radical yield in reactions of ozone with lignin and carbohydrate model compounds were investigated. It was demonstrated that ozone reacts with phenolates several orders of magnitude more rapidly than with corresponding undissociated phenols. The pH dependence of the radical yield does not completely follow the pK a-value of the phenols. In fact, the radical yield starts to increase at pH 3 for all the phenolic model compounds investigated. Several indications suggest that superoxide rather than the hydroxyl radical is initially formed when ozone reacts with lignin model compounds. In contrast to lignin model compounds no radicals were detected in ozone reactions with carbohydrate model compounds or olefins. On the basis of this study, it may be concluded that ozone bleaching should preferably be performed at pH 3 and at a higher consistency. No significant effect of metal ions was observed.


1972 ◽  
Vol 2 (3) ◽  
pp. 271-275 ◽  
Author(s):  
G. E. Troughton ◽  
J. F. Manville

Rates of formation were measured for the base-catalyzed condensation reactions occurring between 4-alkylguaiacol compounds and their 6-methylol derivatives over the temperature range 85.5–100 °C. It was found that both the intercondensation reaction between the 4-alkylguaiacol compound and its 6-methylol derivative and the self-condensation reaction of the latter compound occurred at significant rates. In the 4-propylguaiacol – 4-methyl-6-methylolguaiacol system, the above two condensation reactions occurring in this system had the same activation energies, 35 kcal/mol. Similarly, in the 4-methylguaiacol – 4-propyl-6-methylolguaiacol system these two condensation reactions had equivalent activation energies, but slightly lower than in the former system, 32 kcal/mol. The kinetic results found for the model guaiacol compounds in this study demonstrate the possibility that a lignin-derived compound having more than one reactive position can be developed into a phenolic-type resin.


Sign in / Sign up

Export Citation Format

Share Document