Quality Evaluation of Jajrood River (IRAN) by Quality Indices Methods

2013 ◽  
Vol 650 ◽  
pp. 652-657
Author(s):  
Mohammad Mirzaei ◽  
Hamed Hasanian

This Regular evaluation and analysis of river quality helps accurate management to reach acceptable quality. In this study, water quality indices (WQI) method applied to evaluate quality of Jajrood River which is one of the main sources of Tehran drinking water. It helps to subsidize management actions in Jajrood watershed. Sampling carried out for 9 years during 2001-2010 in 10 stations along the river in wet and dry stations to identify water quality and the main source of pollution. Results show water quality in all stations classifies as medium according to National Sanitation Foundation (NSF) and water quality index in wet season is better than the corresponding value in dry seasons. Entrance of pollution during the upstream of Latian Dam (especially in populated centers) has negative effect on the water quality, however river has a good natural attenuation capacity, therefore quality index of river in the main inlet of Latian dam (Lashkarak Bridge) classifies as medium. Collecting wastewater at the populated centers and developing soil conservation and controlling erosion at the upstream of watershed can effectively improve the water quality of river.

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Teck-Yee Ling ◽  
Norliza Gerunsin ◽  
Chen-Lin Soo ◽  
Lee Nyanti ◽  
Siong-Fong Sim ◽  
...  

This study examined the water quality of the large young tropical Bakun hydroelectric reservoir in Sarawak, Malaysia, and the influence of the outflow on the downstream river during wet and dry seasons. Water quality was determined at five stations in the reservoir at three different depths and one downstream station. The results show that seasons impacted the water quality of the Bakun Reservoir, particularly in the deeper water column. Significantly lower turbidity, SRP, and TP were found during the wet season. At 3–6 m, the oxygen content fell below 5 mg/L and hypoxia was also recorded. Low NO2--N, NO3--N, and SRP and high BOD5, OKN, and TP were observed in the reservoir indicating organic pollution. Active logging activities and the dam construction upstream resulted in water quality deterioration. The outflow decreased the temperature, DO, and pH and increased the turbidity and TSS downstream. Elevated organic matter and nutrients downstream are attributable to domestic discharge along the river. This study shows that the downstream river was affected by the discharge through the turbines, the spillway operations, and domestic waste. Therefore, all these factors should be taken into consideration in the downstream river management for the health of the aquatic organisms.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Zemed Menberu ◽  
Beshah Mogesse ◽  
Daniel Reddythota

AbstractLake Hawassa is one of the major Ethiopian Rift Valley Lakes having an endorheic basin system. The surrounding community makes use of the lake water for the multiple purposes of irrigation, domestic water supply, recreation and fish harvesting. The aim of the present study was to ascertain the water quality of the lake in terms of water quality indices (WQI) and its health over a period of three months covering both dry and wet seasons. Overall, the water quality of Lake was unfit and bad as per the weighted arithmetic method (120.06–228.29) and modified Bascarón water quality index (MBWQI) methods (26.81–33.89), respectively. However, the quality was indicated as marginal, as per the Canadian Council of Ministers of the Environment (CCME) water quality index method (44.2–51.1). On average, the lake was under the hypertrophic stage as per the standard based on the results of Secchi depth and nutrient concentration. The current study showed the lake being unfit for all-purposes as per WAWQI range (> 100). According to the physicochemical and biological parameters, of the lake, it requires mitigation measures to control Eutrophication and pollutants inflow.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Raphael Terungwa Iwar ◽  
Joseph Terlumun Utsev ◽  
Martina Hassan

AbstractIn this work, the quality of River Benue water at Makurdi was assessed for its heavy metal load alongside seven other physico-chemical parameters using water quality index (WQI) and multivariate statistical tools. A total of 45 samples from three (3) different points along the River course were collected for five months (October 2018–May, 2019) spanning the dry and wet seasons. Samples were analysed  in accordance with standard methods. Most of the parameters evaluated were found to fall in the allowable limits of the World Health Organization (WHO) among others, except for colour, turbidity, total suspended solids, nickel, lead and cadmium. WQI analysis using the BISWQI, OWQI and CCMEWQI indicated that all indexing methods were suitable for estimating the WQI of River Benue as they all showed that the water corresponded to the classification as “poor water”. Heavy metal index of the river ranged from13.40–6080.00 and from 47.07–7240.00 for the dry and wet seasons, respectively, and was majorly influenced by high cadmium and lead pollution levels. Principal component analysis (PCA) revealed three rotated factor with respective communality levels for both the dry and wet seasons. Factor 1 was positively loaded with nine parameters which accounted for 32.3% of the total variance during the dry season, while it was positively loaded with 10 parameters in the wet season accounting for 25.9% of total variance. Hierarchical cluster analysis (HCA) revealed that the river was zoned into four clusters each for both dry and wet seasons. Sampling points 2 and 3 were the most polluted during the dry season, while sampling point 1 was found to be the most polluted in the wet season. It was concluded that the increasing and diverse nature of anthropogenic activities on the river course was responsible for the deteriorating quality of the water. The study recommended continuous pollution monitoring and local regulations to reduce the entrance of both diffuse and point source pollution into the river.


Author(s):  
Victus Bobonkey Samlafo ◽  
Desmond Adakwah

Aim: To evaluate water quality of the river Birim after a two-year ban as a result of illegal mining activities in the catchment areas of the river. Methodology: Samples were taken during wet and dry seasons in acid-washed plastic containers. Two water quality indices were adapted for the river under study and used in the evaluation. These were Water Quality Index (WQI) and Heavy Metal Pollution Index (HPI). Twelve physicochemical parameters, such as pH, turbidity, conductivity, total suspended solids, total dissolved solids, total hardness, alkalinity, sulphate, phosphate, nitrate, Fluoride, and chloride which were life-threatening and generally acceptable in water quality were used to evaluate the water quality index. The computed WQI was 439.168, which fell within the unfit for drinking category with turbidity and total suspended solids positively influencing the index.  Iron, (Fe), As, Mn, and Hg were used to evaluate HPI, with an index value of 39.49, which was excellent considering a critical value of 100 set, below which the water is fit for good drinking water. Conclusion: Except for heavy metal pollution, the river Birim is unfit for drinking without chemical treatment and that, the two-year ban on artisanal small-scale mining was not enough for the river to recover fully from previous pollution episodes and hence did not have any impact on water quality of the river Birim.


2016 ◽  
Vol 42 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Gholamreza Darvishi ◽  
Farshad Golbabaei Kootenaei ◽  
Maedeh Ramezani ◽  
Eissa Lotfi ◽  
Hosseinali Asgharnia

Abstract Rivers are considered as one of the main resources of water supply for various applications such as agricultural, drinking and industrial purposes. Also, these resources are used as a place for discharge of sewages, industrial wastewater and agricultural drainage. Regarding the fact that each river has a certain capacity for acceptance of pollutants, nowadays qualitative and environmental investigations of these resources are proposed. In this study, qualitative investigation of the Talar river was done according to Oregon Water Quality Index (OWQI), National Sanitation Foundation Water Quality Index (NSFWQI) and Wilcox indicators during 2011–2012 years at upstream, midstream and downstream of the river in two periods of wet and dry seasons. According to the results of OWQI, all of the values at 3 stations and both periods are placed at very bad quality category and the water is not acceptable for drinking purposes. According to NSFWQI, the best condition was related to the upstream station at wet season period (58, medium quality) and the worst condition was related to the downstream in wet season period (46, very bad quality). Also the results of Wilcox showed that in both periods of wet season and dry season, the water quality is getting better from upstream station to the downstream station, and according to the index classification, the downstream water quality has shown good quality and it is suitable for agriculture.


2020 ◽  
Vol 10 (5) ◽  
pp. 94-104
Author(s):  
J. Safieh ◽  
D. Rebwar ◽  
M.H. Hamed

Background: Providing fresh water suitable for drinking and farming and living organisms in the ecosystem is essential. To evaluate water quality, qualitative indicators are often employed for managing water resources and water quality protection and pollution abatement. Aim: This study evaluated the quality of Borkhar basin water resources using three different water quality indices, including National Institutes of Health Water Quality Index (NIHWQI) having nine parameters, the Oregon Water Quality Index (OWQI) having eight parameters, and the Canadian Water Quality Indices (CWQI) with 22 main parameters. Material and methods: Using data for a period of 30 years, NIHWQI, OWQI and CWQI were used. To analyze water quality of the entire basin for current and future time. New findings: Results showed that water quality of the basin was in a very moderate range according to NSFWQI, and was in a very bad range accordingly to OWQI. Water quality forecasts showed that future water quality would be bad, based on OWQI and moderate based on NSFWQI, whereas based on CWQI, it will be good for drinking, and bad for aquatic animals, recreation, irrigation, and livestock use.


2020 ◽  
Vol 2 (2) ◽  
pp. 99-108
Author(s):  
Cristina Dinu ◽  
◽  
Roxana Elena Scutariu ◽  
Gabriela Geanina Vasile ◽  
Anda Gabriela Tenea ◽  
...  

A study for evaluating the quality of wastewater discharged into the sewerage network of Bucharest, for several economic agents with various activity profiles: a car wash, a sweet producer, and a provider of automatic access systems were presented in this paper. The study was conducted over five years (2013- 2017). The results obtained for the analyzed parameters were compared with the maximum allowed values (MAV) by the legislation in force. The results showed that for the car wash there was only one exceeding of the chemical oxygen demand (COD) parameter during the whole study period. The sweet producer and the provider of the automatic access systems evacuated wastewater with exceedances of MAV for the parameters: COD, BOD5, zinc, suspended solids, extractable substances in organic solvents, and total phosphorus. To evaluate the quality of the wastewater discharged by these two agents, the quality indices of wastewater (WWQI) were calculated. For the sweet producer, the calculated water quality indices had values between 62.4 - 92.7%, with a classification of wastewater, discharged in the quality class: marginal to good quality. For the provider of automatic access systems, the value of the quality index was between 74.2 and 85.5, the discharged wastewater being considered fair or good.


2021 ◽  
Vol 29 (3) ◽  
Author(s):  
Zaid Abed Al-Ridah ◽  
Ahmed Samir Naje ◽  
Diaa Fliah Hassan ◽  
Hussein Ali Mahdi Al-Zubaid

This study was conducted to evaluate the groundwater quality of wells located around the Hillah city of Iraq, for the purposes of determining its suitability as water for agricultural irrigation, according to the Irrigation Water Quality Index (IWQI). The number of wells that are being investigated was 24. The spatial distribution of water quality parameters was investigated using ArcGIS software. Ten parameters were established for the dry and wet seasons of 2018 and 2019, which include pH, electric conductivity (EC), total dissolved solids (TDS), calcium, potassium, magnesium, bicarbonate, sodium, chloride and sulfuric. The results showed that all pH and sodium absorption ratio values were within the allowable limits. About 69%, and 75% electric conductivity, total dissolved solids, values respectively were higher than the allowable limits. Most values of positive and negative ions were higher than the allowable limits. In 2018, the water quality of (4%) of wells number was classified as moderate restriction and approximately 96% was poor quality in dry season, while the IWQI was enhanced in the wet season. In 2019, the quality of water was dropped as most of the water quality was classified as severe restriction and few in the high restriction for the dry season. These values were increased in the wet season due to the freshwater dilution effect. Water quality index show that a large percentage of the wells have poor water quality leads to severe restriction for irrigation requirements and need relatively high permeability soils and salt-resistant plants.


2021 ◽  
Vol 13 (1) ◽  
pp. 1643-1655
Author(s):  
Xuekai Chen ◽  
Xiaobo Liu ◽  
Bogen Li ◽  
Wenqi Peng ◽  
Fei Dong ◽  
...  

Abstract For the implementation of lake ecological protection, understanding the water pollution status and spatio–temporal variation of water quality has become the most important thing for water safety in the basin. To analyze the water quality in recent years, water quality data in Erhai lake from 2013 to 2017 were first collected from typical nine monitoring stations. Based on the comprehensive water quality index (WQI) method, the temporal and spatial variation characteristics of water quality in Erhai lake were analyzed, and the main factors affecting water quality in Erhai lake were explored. The results indicated that the water quality of Erhai lake was worse than its target water quality, and total nitrogen (TN) and total phosphorus (TP) exceeded the Class Ⅱ standards (TN: 0.5 mg L−1, TP: 0.025 mg L−1) of China’s Environmental Quality Standard for Surface Water (GB3838-2002). In terms of changes across seasons, the overall lake water quality in the dry season was better than that in the wet season, and TN and TP reached the peak value in September. In terms of spatial distribution, water quality of the northern area was better than that of the southern area in the dry season, whereas water quality of the southern area was better than that of the northern area in the wet season. At present, Erhai lake is at a critical turning point of water eutrophication, and its nutrition status is mainly affected by both nitrogen and phosphorus. The pollution load from the land area is the main factor affecting the deterioration of Erhai lake. Our results can provide a scientific basis for the treatment of the water environment of Erhai lake.


2021 ◽  
Vol 3 (1) ◽  
pp. 111-123
Author(s):  
Safieh Javadinejad ◽  
◽  
Rebwar Dara ◽  
Masoud Hussein Hamed ◽  
Mariwan Akram Hamah Saeed ◽  
...  

Providing fresh water suitable for drinking and farming and living organisms in the ecosystem is essential. To evaluate water quality, qualitative indicators are often employed for managing water resources and water quality protection and pollution abatement. This study evaluated the quality of Borkhar basin water resources using three different water quality indices, including National Institutes of Health Water Quality Index (NIHWQI) having nine parameters, the Oregon Water Quality Index (OWQI) having eight parameters, and the Canadian Water Quality Indices (CWQI) with 22 main parameters. Using data for a period of 30 years, NIHWQI, OWQI and CWQI were used. To analyze water quality of the entire basin for current and future time. Results showed that water quality of the basin was in a very moderate range according to NSFWQI, and was in a very bad range accordingly to OWQI. Water quality forecasts showed that future water quality would be bad, based on OWQI and moderate based on NSFWQI, whereas based on CWQI, it will be good for drinking, and bad for aquatic animals, recreation, irrigation, and livestock use.


Sign in / Sign up

Export Citation Format

Share Document