Numerical Simulation of the Performance of Gas Turbine Combustor

2013 ◽  
Vol 655-657 ◽  
pp. 457-460
Author(s):  
Kai Liu

Numerical simulation of the performance of QD128 gas turbine combustor was finished using CFD method. The results indicate: The flow meter distribution of combustor is reasonable, and the velocity field of combustor meets the design requirements. Outlet average temperature is 1298K, hot spot temperature is 1486K, the temperature distribution curve meets the design requirements, and OTDF=0.280,RTDF=0.086,which are slightly higher than the level of prototype aircrafts. The results enrich the design data of QD128 gas turbine, and provide reliable reference for the running and improving.

1992 ◽  
Vol 15 (8) ◽  
pp. 865-881 ◽  
Author(s):  
S. L. Yang ◽  
R. Chen ◽  
M. C. Cline ◽  
H. L. Nguyen ◽  
G. J. Micklow

Author(s):  
Washington Orlando Irrazabal Bohorquez ◽  
João Roberto Barbosa ◽  
Rob Johan Maria Bastiaans ◽  
Philip de Goey

Currently, high efficiency and low emissions are most important requisites for the design of modern gas turbines due to the strong environmental restrictions around the world. In the past years, alternative fuels have been considered for application in industrial gas turbines. Therefore, combustor performance, pollutant emissions and the ability to burn several fuels became of much concern and high priority has been given to the combustor design. This paper describes a methodology focused on the design of stationary gas turbines combustion chambers with the ability to efficiently burn conventional and alternative fuels. A simplified methodology is used for the calculations of the equilibrium temperature and chemical species in the primary zone of a gas turbine combustor. Direct fuel injection and diffusion flames, together with numerical methods like Newton-Raphson, LU Factorization and Lagrange Polynomials, are used for the calculations. Diesel, ethanol and methanol fuels were chosen for the numerical study. A computer code sequentially calculates the main geometry of the combustor. From the numerical simulation it is concluded that the basic gas turbine combustor geometry, for some operating conditions and burning diesel, ethanol or methanol, are of similar sizes, because the development of aerodynamic characteristics predominate over the thermochemical properties. It is worth to note that the type of fuel has a marked effect on the stability and combustion advancement in the combustor. This can be seen when the primary zone is analyzed under a steady-state operating condition. At full power, the pressure is 1.8 MPa and the temperature 1,000 K at the combustor inlet. Then, the equivalence ratios in the primary zone are 1.3933 (diesel), 1.4352 (ethanol) and 1.3977 (methanol) and the equilibrium temperatures for the same operating conditions are 2,809 K (diesel), 2,754 K (ethanol) and 2,702 K (methanol). This means that the combustor can reach similar flame stability conditions, whereas the combustion efficiency will require richer fuel/air mixtures of ethanol or methanol are burnt instead of diesel. Another important result from the numerical study is that the concentration of the main pollutants (CO, CO2, NO, NO2) is reduced when ethanol or methanol are burnt, in place of diesel.


2020 ◽  
Vol 24 (3 Part B) ◽  
pp. 1977-1989
Author(s):  
Seyfettin Hataysal ◽  
Ahmet Yozgatligil

Gas turbine combustor performance was explored by utilizing a 1-D flow network model. To obtain the preliminary performance of combustion chamber, three different flow network solvers were coupled with a chemical reactor network scheme. These flow solvers were developed via simplified, segregated and direct solutions of the nodal equations. Flow models were utilized to predict the flow field, pressure, density and temperature distribution inside the chamber network. The network model followed a segregated flow and chemical network scheme, and could supply information about the pressure drop, nodal pressure, average temperature, species distribution, and flow split. For the verification of the model?s results, analyses were performed using CFD on a seven-stage annular test combustor from TUSAS Engine Industries, and the results were then compared with actual performance tests of the combustor. The results showed that the preliminary performance predictor code accurately estimated the flow distribution. Pressure distribution was also consistent with the CFD results, but with varying levels of conformity. The same was true for the average temperature predictions of the inner combustor at the dilution and exit zones. However, the reactor network predicted higher elemental temperatures at the entry zones.


Author(s):  
D. Scott Crocker ◽  
Clifford E. Smith

An advanced method for dilution zone mixing in a reverse flow gas turbine combustor was numerically investigated. For long mixing lengths associated with reverse flow combustors (X/H > 2.0), pattern factor was found to be mainly driven by nozzle-to-nozzle fuel flow and/or circumferential airflow variations; conventional radially injected dilution jets could not effectively mix out circumferential non-uniformities. To enhance circumferential mixing, dilution jets were angled to produce a high circumferential (swirl) velocity component. The jets on the outer liner were angled in one direction while the jets on the inner liner were angled in the opposite direction, thus enhancing turbulent shear at the expense of jet penetration. 3-D CFD calculations were performed on a three-nozzle (90°) sector, with different fuel flow from each nozzle (90%, 100% and 110% of design fuel flow). The computations showed that the optimum configuration of angled jets reduced the pattern factor by 60% compared to an existing conventional dilution hole configuration. The radial average temperature profile was adequately controlled by the inner-to-outer liner dilution flow split.


Author(s):  
Veeraraghava Raju Hasti ◽  
Prithwish Kundu ◽  
Gaurav Kumar ◽  
Scott A. Drennan ◽  
Sibendu Som ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3817
Author(s):  
Kanmaniraja Radhakrishnan ◽  
Jun Su Park

Thermal barrier coating (TBC) plays a vital role in the gas turbine combustor liner (CL) to mitigate the internal heat transfer from combustion gas to the CL and enhance the parent material lifetime of the CL. This present study examined the thermal analysis and creep lifetime prediction based on three different TBC thicknesses, 400, 800, and 1200 μm, coated on the inner CL using the coupled computational fluid dynamics/finite element method. The simulation method was divided into three models to minimize the amount of computational work involved. The Eddy Dissipation Model was used in the first model to simulate premixed methane-air combustion, and the wall temperature of the inner CL was obtained. The conjugate heat transfer simulation on the external cooling flows from the rib turbulator, impingement jet, and cross flow, and the wall temperature of the outer CL was obtained in the second model. The thermal analysis was carried out in the third model using three different TBC thicknesses and incorporating the wall data from the first and second model. The effect of increasing TBC thickness shows that the TBC surface temperature was increased. Thereby, the inner CL metal temperature was decreased due to the TBC thickness as well as the material properties of Yttria Stabilized Zirconia, which has low thermal conductivity and a high thermal expansion coefficient. With the increase in TBC thickness, the average temperature difference between the TBC surface and the inner metal surface increased. In contrast, the average temperature difference between the inner and outer metal surfaces remained nearly constant. The von Mises equivalent stress, based on the material property and thermal expansion coefficient, was determined and used to find the creep lifetime of the CL using the Larson–Miller rupture curve for all TBC thickness cases in order to analyze the thermo-structure. Except in the C-channel, the increasing TBC thickness was found to effectively increase the CL lifespan. Furthermore, the case without TBC was compared with the damaged CL with cracks due to thermal stress, which was prevented by increasing TBC thickness shown in this present study.


Author(s):  
D. Scott Crocker ◽  
Clifford E. Smith ◽  
Geoff D. Myers

An advanced method for dilution zone mixing in reverse flow gas turbine combustors was experimentally investigated. To enhance circumferential mixing, dilution jets were injected with a high circumferential (swirl) velocity component. The jets on the outer liner were angled in one direction while the jets on the inner liner were angled in the opposite direction. To demonstrate reduced pattern factor, AlliedSignal Engines’ F109 combustor was tested at sea level takeoff conditions. For the baseline (conventional) configuration, the experimental results showed that large scale circumferential temperature non-uniformities at the turbine inlet were caused primarily by fuel flow variations from nozzle to nozzle. These temperature variations were significantly reduced by angled dilution jets. A pattern factor of 0.102 was achieved compared to the best case pattern factor of 0.163 for the baseline configuration. The only combustor modification was the dilution hole configuration. The radial average temperature profile produced by angled dilution jets was very similar to the profile produced by the baseline configuration.


2012 ◽  
Vol 490-495 ◽  
pp. 876-879
Author(s):  
Yan Jun Zhang ◽  
Feng Tian ◽  
Jian Yang ◽  
Qiu Ming Sun ◽  
Ming Xi Hu ◽  
...  

Structure optimization design of negative-pressure isolated cabin and numerical simulation for airflow are preformed by using CFD method,and trace of expiration contamination by patient are studied. Results show that when area of outlet setting as 4235mm2, the negative pressure in cabin reached -31.96 Pa meeting to the design requirements. And air flow rate near the head of the body are 0.14m/s, which is comfort for human and closing to test value(0.11m/s). Flow rate and pressure in the cabin distributed evenly in the most of the space of cabin, by which bio-safety and comfort was assured . Results also show that fresh air, after fully spreading, formed airflow to the feet above chest which can drive contaminants expelling from the mouth forming one-way flow to the feet direction, which can ensure maximum exhaust to discharge from cabin and air quality in the cabin improved.


Sign in / Sign up

Export Citation Format

Share Document