Fabrication of Indium Tin Oxide Targets by Spark Plasma Sintering and Hot-Pressing Sintering

2009 ◽  
Vol 66 ◽  
pp. 96-99 ◽  
Author(s):  
Wei Guo ◽  
Wei Min Wang ◽  
Hao Wang ◽  
Yu Cheng Wang ◽  
Zheng Yi Fu

The Indium Tin Oxide(ITO) is known as a poorly sinterable material. The Spark Plasma Sintering(SPS) and the hot-pressing sintering(HP) were used to fabricate Indium Tin Oxide Ceramics from ITO nanoparticles. The maximum bulk density of 7.02 g/cm2(relative density; 98.2% TD)was obtained when sintered in Ar at 1000oC for 1min by SPS sintering. While the bulk density of 7.08 g/cm2(relative density; 99% TD) was obtained when sintered in Ar at 1050 oC for 4h by HP sintering.

2007 ◽  
Vol 534-536 ◽  
pp. 1229-1232
Author(s):  
Li Hui Zhu ◽  
Guang Jie Shao ◽  
Yi Xiong Liu ◽  
Dave Siddle

WC-10Co-0.8VC nanocrystalline powders were sintered by spark plasma sintering (SPS) and hot pressing sintering (HPS), and the microstructure and properties were compared. Results show that, sintered at 1300°C, the sample prepared by SPS for only 3 minutes has higher density than that prepared by HPS for 60 minutes. SEM and SPM observation shows SPS at 1200°C has a more uniform and finer microstructure, and most of the WC grains are smaller than 100nm. It has a relative density of 95.1%, HV30 of 1887, and KIC of 11.5 MPam1/2. If a suitable sintering parameter is chosen, SPS is a promising consolidation technique to prepare nanocrystalline WC-10Co-0.8VC with improved properties.


2008 ◽  
Vol 91 (8) ◽  
pp. 2495-2500 ◽  
Author(s):  
Tomonari Takeuchi ◽  
Hiroyuki Kageyama ◽  
Hiromi Nakazawa ◽  
Toshiyuki Atsumi ◽  
Shigeharu Tamura ◽  
...  

2007 ◽  
Vol 534-536 ◽  
pp. 593-596 ◽  
Author(s):  
Lan Sun ◽  
Cheng Chang Jia ◽  
Hua Tang

This paper concerned with SPS (spark plasma sintering), hot pressing of sinter nanometer WC-Co powder and discussed the density, hardness, microstructures and grain sizes of the alloys sintered by different styles. The results showed that SPS could lower the sintering temperature, increased the density and circumscribed the growth of grain size of WC. Hot pressing sintering could produce high density alloys and play well on the grain growth, but its sintering temperature and sintering time were larger than SPS. Besides, the hardness of the sintered cemented alloys that was dependent on the grain size and densification could also be improved by SPS and hot pressing.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1949 ◽  
Author(s):  
Dongming Jia ◽  
Junbing Ma ◽  
Xueping Gan ◽  
Jingmei Tao ◽  
Ming Xie ◽  
...  

In this study, carbon nanotube-reinforced silver composites (CNT/Ag) were prepared by the powder metallurgy process via spark plasma sintering (SPS) and hot pressing sintering (HP) with composite powders through an improved electroless plating method assisted by ultrasonic spray atomization. The dispersion of CNTs was effectively improved by ultrasonic spray atomization, and uniform silver layers were deposited on the surface of CNTs by electroless deposition. The property testing results showed significant improvements of the electrical conductivity, hardness, and tensile strength in the samples prepared by SPS, as compared to their HP sintered counterparts. When the volume fraction of CNTs reached 2.5%, the tensile strength reached a maximum value of 221 MPa, which was more than twice that of the pure silver samples. The structural analysis indicated different degrees of CNT agglomeration and matrix mean grain sizes in the composites prepared by SPS and HP, which are responsible for the differences in properties.


2012 ◽  
Vol 508 ◽  
pp. 230-234
Author(s):  
Xue Ping Li ◽  
Fei Chen ◽  
Qiang Shen ◽  
An Xue Wang ◽  
Lian Meng Zhang

High Density Antimony-Doped Tin Oxide (ATO) Ceramic Targets Are the Crucial Materials for Preparation of High Quality Transparent Conductive ATO Thin Films in Sputtering Process. In the Present Work, ATO Nanopowders with Different Sb2O3 Doping Content (0~10 mol%) Were Used to Fabricate the ATO Nanoceramics by Spark Plasma Sintering (SPS) Technique, which Can Reduce the Densification Temperature and Restrain a Grain Growth. And the Effect of Sb2O3 Doping Content (0~10 mol%) on the Density and Microstructure Had Been Investigated. the Results Showed that with the Sb2o3 Doping Content Increase, the Relative Density of ATO Nanoceramics Is Increased and the Resistivity Is Decreased. When the Sb2O3 Doping Content Is 10 mol%, the Relative Density Is 97.2% and the Resistivity Is 7.9×10-2 Ω•cm.


2020 ◽  
Vol 39 (1) ◽  
pp. 457-465
Author(s):  
Jiangpeng Yan ◽  
Zhimin Zhang ◽  
Jian Xu ◽  
Yaojin Wu ◽  
Xi Zhao ◽  
...  

AbstractThe cylindrical samples of TC4 titanium alloy prepared by spark plasma sintering (SPS) were compressed with hot deformation of 70% on the thermosimulation machine of Gleeble-1500. The temperature of the processes ranged from 850°C to 1,050°C, and the strain rates varied between 0.001 and 5 s−1. The relative density of the sintered and compressed samples was measured by the Archimedes principle. During hot deformation, the microstructure of the sample was observed. The results show that the average relative density of the samples was 90.2% after SPS. And the relative density was about 98% after the hot deformation of 70%. Under high temperature (>950°C), the sensitivity of flow stress to temperature was reduced. At low strain rate (0.001 s−1), the increase in the deformation temperature promoted the growth of dynamic recrystallization (DRX). At the same temperature, the increase in strain rate slowed down the growth of DRX grains. And the variation tendency was shown from the basket-weave structure to the Widmanstätten structure at a low strain rate (<0.1 s−1), with increase in the strain rate.


Sign in / Sign up

Export Citation Format

Share Document