Nanostructured Zinc Oxide Thin Film Based Humidity Sensor Prepared by Sol-Gel Immersion Technique

2013 ◽  
Vol 667 ◽  
pp. 553-557 ◽  
Author(s):  
M. Awalludin ◽  
Mohamad Hafiz Mamat ◽  
Mohd Zainizan Sahdan ◽  
Z. Mohamad ◽  
Mohamad Rusop

This paper focus on nanostructured Zinc Oxide (ZnO) thin film based humidity sensor prepared using sol-gel method immersion technique at different immersion time. Scanning Electron Microscopy (SEM) investigations reveal nanorods ZnO were deposited on glass substrate with nanorods length increased with immersion time. All fabricated sensors show current intensity increment response when relative humidity is increased. Sensor fabricated at 16 hr immersion time shows the highest sensitivity in this study.

2020 ◽  
Vol 981 ◽  
pp. 51-58
Author(s):  
Agus Geter Edy Sutjipto ◽  
Yit Pei Shian ◽  
Ali Shaitir ◽  
Mohamad Ashry Jusoh ◽  
Ari Legowo

This research deals with ambient energy harvesting by using zinc oxide thin film. The objectives of this thesis are to prove the ZnO film as a piezoelectric material can produce electric when vibration is applied and determine its optimal voltage. The thesis describes the sol gel spin coating technique to fabricate zinc oxide thin film. Zinc acetate dehydrate, absolute ethanol and diethanolamine were used in this thesis to act as sol gel precursor. Sol gel was coated on glass slide which wrapped by aluminum foil. The thin film was formed after preheating and annealing. The thin film was characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Photoluminescence spectroscopy (PL) and Ultraviolet-visible spectroscopy (UV-Vis) as well as analyzed using vibration technique. From XRD results, the films were preferentially diffracted at around 65° which corresponding to (1 1 2) diffraction phase. From FESEM results, it was observed that when the spin speed was increased at same annealing temperature, the thickness was also decreased. When the annealing temperature was increased at same spin speed, both grain size and thickness were increased. From the PL results, there was only film with spin speed of 2000 rpm and annealing temperature of 300 °C had slightly left wavelength which was 380 nm. Annealing temperature would affect only the intensity of PL wavelength. From the results of UV-Vis, it was observed that when the spin speed was increased at same annealing temperature, the band gap was decreased. When the annealing temperature was increased at same spin speed, the band gap was decreased. Piezoelectric test had proven the ZnO film could produce electricity. The maximum voltage (20.7 mV) was produced by the ZnO film with spin speed of 2000 rpm and annealing temperature of 300 °C.


2010 ◽  
Vol 25 (4) ◽  
pp. 695-700 ◽  
Author(s):  
Young Hwan Hwang ◽  
Seok-Jun Seo ◽  
Byeong-Soo Bae

Thin-film transistors (TFTs) with zinc oxide channel layers were fabricated through a simple and low-cost solution process. Precursor solution concentration, annealing temperature, and the process were controlled for the purpose of improving the electrical properties of ZnO TFTs and analyzed in terms of microstructural scope. The fabricated ZnO films show preferential orientation of the (002) plane, which contributes to enhanced electron conduction and a dense surface. The results show that the TFT characteristics of the film are clearly affected by the microstructure. The optimized TFT operates in a depletion mode, shows n-type semiconductor behavior, and is highly transparent (>90%) within the visible light range. It exhibits a channel mobility of 9.4 cm2/V·s, a subthreshold slope of 3.3 V/decade, and an on-to-off current ratio greater than 105. In addition, the result of N2 annealing shows the possibility of improvement in electrical property of the ZnO TFTs.


2013 ◽  
Vol 667 ◽  
pp. 388-392
Author(s):  
S.Z. Muhamed ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

We investigated the effect of immersion time on optical, electrical properties and surface morphology of nanostructured Aluminium (Al) doped Zinc Oxide (ZnO) thin films prepared by immersion technique. UV-Vis-NIR spectra indicate that the transmittance of the samples decrease with immersion time. Electrical properties study reveals the nanostructured Al doped ZnO thin film at 1 hr shows the lowest resistivity compared to other samples. Surface morphology results as characterized by scanning electron microscope (SEM) show that the Al doped ZnO nanorods quantity increased with immersion time.


Sign in / Sign up

Export Citation Format

Share Document