Fabrication and characterization of sol-gel-derived zinc oxide thin-film transistor

2010 ◽  
Vol 25 (4) ◽  
pp. 695-700 ◽  
Author(s):  
Young Hwan Hwang ◽  
Seok-Jun Seo ◽  
Byeong-Soo Bae

Thin-film transistors (TFTs) with zinc oxide channel layers were fabricated through a simple and low-cost solution process. Precursor solution concentration, annealing temperature, and the process were controlled for the purpose of improving the electrical properties of ZnO TFTs and analyzed in terms of microstructural scope. The fabricated ZnO films show preferential orientation of the (002) plane, which contributes to enhanced electron conduction and a dense surface. The results show that the TFT characteristics of the film are clearly affected by the microstructure. The optimized TFT operates in a depletion mode, shows n-type semiconductor behavior, and is highly transparent (>90%) within the visible light range. It exhibits a channel mobility of 9.4 cm2/V·s, a subthreshold slope of 3.3 V/decade, and an on-to-off current ratio greater than 105. In addition, the result of N2 annealing shows the possibility of improvement in electrical property of the ZnO TFTs.

2021 ◽  
Vol 900 ◽  
pp. 103-111
Author(s):  
Christelle Habis ◽  
Jean Zaraket ◽  
Michel Aillerie

Transparent conductive oxides are materials combining great transparency with high conductivity. In photovoltaic applications, they are developed under thin layer for the realization of upper electrodes of solar cells. Among transparent oxide materials, Zinc Oxide (ZnO) presents unique properties, starting with its first qualities to be abundant, low-cost and non-toxic oxide. Zinc Oxide thin film was deposited on rectangular glass substrate by magnetron sputtering. After an overview of the properties expected for good transparent conductive materials, the effect of distance from the center of the cell on the morphology of the film was investigated by Atomic Force Microscopy (AFM). The scanning was done on different area of the sample as function of the distance from the central position of the direct sputtering jet. As far as the distance increased, it has been noticed a quasi-linear increase in thickness of the ZnO deposited film and a change in the grain shape from spherical to pyramidal with an increase in the size of the particles. Controlling the sputtering distance allows the control of texture, thus of the Haze factor, the photo-generation of excitons, as well the optical transmission of the TCO layer and finally an improvement in the efficiency of the so-built photovoltaic cells.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1600 ◽  
Author(s):  
Alexander Tkach ◽  
André Santos ◽  
Sebastian Zlotnik ◽  
Ricardo Serrazina ◽  
Olena Okhay ◽  
...  

If piezoelectric micro-devices based on K0.5Na0.5NbO3 (KNN) thin films are to achieve commercialization, it is critical to optimize the films’ performance using low-cost scalable processing conditions. Here, sol–gel derived KNN thin films are deposited using 0.2 and 0.4 M precursor solutions with 5% solely potassium excess and 20% alkali (both potassium and sodium) excess on platinized sapphire substrates with reduced thermal expansion mismatch in relation to KNN. Being then rapid thermal annealed at 750 °C for 5 min, the films revealed an identical thickness of ~340 nm but different properties. An average grain size of ~100 nm and nearly stoichiometric KNN films are obtained when using 5% potassium excess solution, while 20% alkali excess solutions give the grain size of 500–600 nm and (Na + K)/Nb ratio of 1.07–1.08 in the prepared films. Moreover, the 5% potassium excess solution films have a perovskite structure without clear preferential orientation, whereas a (100) texture appears for 20% alkali excess solutions, being particularly strong for the 0.4 M solution concentration. As a result of the grain size and (100) texturing competition, the highest room-temperature dielectric permittivity and lowest dissipation factor measured in the parallel-plate-capacitor geometry were obtained for KNN films using 0.2 M precursor solutions with 20% alkali excess. These films were also shown to possess more quadratic-like and less coercive local piezoelectric loops, compared to those from 5% potassium excess solution. Furthermore, KNN films with large (100)-textured grains prepared from 0.4 M precursor solution with 20% alkali excess were found to possess superior local piezoresponse attributed to multiscale domain microstructures.


Optik ◽  
2014 ◽  
Vol 125 (12) ◽  
pp. 2899-2901 ◽  
Author(s):  
Kyung Ho Kim ◽  
Chiaki Takahashi ◽  
Yoshio Abe ◽  
Midori Kawamura

2012 ◽  
Vol 239-240 ◽  
pp. 1585-1588 ◽  
Author(s):  
Yuh Chung Hu ◽  
David T.W. Lin ◽  
Hai Lin Lee ◽  
Pei Zen Chang

The effect of Zinc-Oxide (ZnO) thin film annealed in different ambiences is presented. To achieve low cost and environmentally friendly process, ZnO aqueous solution is synthesized by dissolving zinc acetate dihydrate in deionized water directly. Zinc oxide aqueous solution of high solubility and stability is presented. High quality and dense Zinc oxide thin film is formed by spin coating. Annealing temperatures are in the range of 300 °C~500 °C, and annealing ambiences of both air and N2 are discussed.


2020 ◽  
Vol 981 ◽  
pp. 51-58
Author(s):  
Agus Geter Edy Sutjipto ◽  
Yit Pei Shian ◽  
Ali Shaitir ◽  
Mohamad Ashry Jusoh ◽  
Ari Legowo

This research deals with ambient energy harvesting by using zinc oxide thin film. The objectives of this thesis are to prove the ZnO film as a piezoelectric material can produce electric when vibration is applied and determine its optimal voltage. The thesis describes the sol gel spin coating technique to fabricate zinc oxide thin film. Zinc acetate dehydrate, absolute ethanol and diethanolamine were used in this thesis to act as sol gel precursor. Sol gel was coated on glass slide which wrapped by aluminum foil. The thin film was formed after preheating and annealing. The thin film was characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Photoluminescence spectroscopy (PL) and Ultraviolet-visible spectroscopy (UV-Vis) as well as analyzed using vibration technique. From XRD results, the films were preferentially diffracted at around 65° which corresponding to (1 1 2) diffraction phase. From FESEM results, it was observed that when the spin speed was increased at same annealing temperature, the thickness was also decreased. When the annealing temperature was increased at same spin speed, both grain size and thickness were increased. From the PL results, there was only film with spin speed of 2000 rpm and annealing temperature of 300 °C had slightly left wavelength which was 380 nm. Annealing temperature would affect only the intensity of PL wavelength. From the results of UV-Vis, it was observed that when the spin speed was increased at same annealing temperature, the band gap was decreased. When the annealing temperature was increased at same spin speed, the band gap was decreased. Piezoelectric test had proven the ZnO film could produce electricity. The maximum voltage (20.7 mV) was produced by the ZnO film with spin speed of 2000 rpm and annealing temperature of 300 °C.


2013 ◽  
Vol 667 ◽  
pp. 553-557 ◽  
Author(s):  
M. Awalludin ◽  
Mohamad Hafiz Mamat ◽  
Mohd Zainizan Sahdan ◽  
Z. Mohamad ◽  
Mohamad Rusop

This paper focus on nanostructured Zinc Oxide (ZnO) thin film based humidity sensor prepared using sol-gel method immersion technique at different immersion time. Scanning Electron Microscopy (SEM) investigations reveal nanorods ZnO were deposited on glass substrate with nanorods length increased with immersion time. All fabricated sensors show current intensity increment response when relative humidity is increased. Sensor fabricated at 16 hr immersion time shows the highest sensitivity in this study.


Sign in / Sign up

Export Citation Format

Share Document