Studies on Power Distribution of AC and VSC-HVDC Hybrid System for Wind Power Integration

2013 ◽  
Vol 676 ◽  
pp. 204-208 ◽  
Author(s):  
Yue Qiang Zhang ◽  
Yong Qiang Zhu ◽  
Yan Zhang Liu

In order to study the power distribution strategy of AC and VSC-HVDC hybrid system for wind power integration, a strategy based on improving the transmission capacity of AC lines and reducing the power loss is proposed. By use of the decouple control of active and reactive power of the VSC-HVDC, the transmission capacity of the AC lines can be improved by absorbing enough reactive power, AC lines have the priority before they have reached their transmission limit, meanwhile the VSC-HVDC acts as STATCOM. When the AC lines have been fully used, the VSC-HVDC will act as STATCOM as well as transmit the rest power. A DFIG wind power integration system is set up by use of PSCAD/EMTDC, the simulation results show that the power distribution strategy can realize the wind power integration successfully and reduce the power loss, it can regard as a good method for wind power integration.

2013 ◽  
Vol 456 ◽  
pp. 142-145
Author(s):  
Guo Qiang Cao ◽  
Yuan Ji Li ◽  
Jiang Ning Liu

Using faraday electromagnetic induction principle will car each wheel as a generator. For car generates its own energy recovery; In the front of car set up a blade, It can recovery the wind power what automobile driving produced, For wind power generation, So that it can recover the energy maximum for the car itself. Because of the two kinds of energy all are car generates its own energy, so it can not recovery completely, in addition to there is power loss in the other part of the car, So it needs to the energy loss and power loss for supplement, I choose the solar energy used as supplementary energy that finally achieve the purpose of "ever moving".


2013 ◽  
Vol 380-384 ◽  
pp. 2972-2976
Author(s):  
Xiang Yu Lv ◽  
Tian Dong ◽  
Ye Yuan ◽  
De Xin Li ◽  
Xiao Juan Han

Large scale wind power integration has influenced the safety of power system. Taking wind power integration in Jilin as example, the paper describes the influencing factors of large scale wind power integration on reactive power of the grid in detail firstly, then analyze the reactive voltage in four typical ways, and discuss the impact of the wind power fluctuations on the grid reactive voltage.


2018 ◽  
Vol 12 (2) ◽  
pp. 507-517 ◽  
Author(s):  
Tao Niu ◽  
Qinglai Guo ◽  
Hongbin Sun ◽  
Haitao Liu ◽  
Boming Zhang ◽  
...  

2013 ◽  
Vol 380-384 ◽  
pp. 3051-3056 ◽  
Author(s):  
Xiao Dan Wu ◽  
Wen Ying Liu

In this paper, starting from the active network loss formulas and wind characteristics, it is pointed out the reactive power loss and reactive flow is the major impact of wind power integration on power system loss. The reactive power loss formulas of box-type transformer, main step-up transformer, wind farm collector line and connecting grid line are analyzed. Next the reactive power loss of transformer and transmission line is described in detail. Then put forward the loss reduction measures that installing SVC on the low voltage side of the main step-up transformer and making the doubly-fed wind generators send out some reactive power at an allowed power factor. Use the case of Gansu Qiaodong wind farm to verify the effectiveness of the proposed measures.


Author(s):  
Mohsin Shahzad ◽  
Qazi Shafiullah ◽  
Waseem Akram ◽  
Muhammad Arif ◽  
Barkat Ullah

The passive power distribution networks are prone to imperfect voltage profile and higher power losses, especially at the far end of long feeders. The capacitor placement is studied in this article using a novel Mine Blast Algorithm (MBA). The voltage profile improvement and reduction in the net annual cost are also considered along with minimizing the power loss. The optimization problem is formulated and solved in two steps. Firstly, the Voltage Stability Index (VSI) is used to rank the nodes for placement of the capacitors. Secondly, from the priority list of nodes in the previous step, the MBA is utilized to provide the optimal location and sizes of the capacitors ensuring loss minimization, voltage profile improvement, and reduced net annual cost. Finally, the results are tested on 33 and 69 radial node systems in MATLAB. The results for the considered variables are presented which show a significant improvement in active and reactive power loss reduction and voltage profile with lesser reactive power injection.


2015 ◽  
Vol 740 ◽  
pp. 397-400
Author(s):  
Min Rui Qiao ◽  
Lin Lin Wu ◽  
Yue Qiao Li

As large-scale wind farms are connected to the grid, a single type compensator cannot meet the demand. STATCOM has ability of rapid reaction and harmonics suppression, SVC can compensate large capacity reactive power. In this study, a compensator, which is able to coordinate Static Var System (SVS) with STATCOM is proposed. Large-scale wind power integration is simulated respectively with the compensator of STATCOM alone and coordinated compensator of SVS and STATCOM by DIgSILENT/Powerfactory15.0. Simulations results clearly verify that the compensator of SVS and STATCOM improves transient stability and performance of the photovoltaic systems.


2018 ◽  
Vol 215 ◽  
pp. 01040
Author(s):  
Dasman Dasman

In the distribution of electrical energy from the plant to the consumer, there is a decrease in quality due to the loss of power (losses). These power losses are caused by a voltage drop across the line and subsequently producing a power loss on the line. This power loss can be classified into two types based on its line parameters, i.e., active power loss and reactive power loss. The line’s active power loss generates losses of power/losses so that the active power reaches the load on the receiving end is always less than the productive power of the sender side. Power losses in the electrical system must exist and cannot be reduced to 0% (zero percent). According to SPLN No. 72 of 1987, the permitted distribution network’s power loss should not be higher than 10%. This paper investigates the magnitude of the voltage loss and the line active power losses on the 20 kV distribution line. The calculation conducted through case study and simulation of Etap 12.6 program on an electrical power distribution system that is 20 kV distribution line in PT. PLN (Persero) Rayon Muara Labuh. In the distribution line 20 kV, there is IPP (Independent Power Plant) PLTMH PT SKE used to improve the stress conditions in Rayon Muara Labuh. Therefore the loss of power will be calculated in 3 terms, i.e., before and after IPP PT. SKE with 20 kV distribution lines as well as on feeder load maintenance (as a repair action plan). The simulation results show the highest voltage drop and the highest power losses continue generated during IPP. PT SKE has not done synchronized with the distribution line of 20 kV with a significant voltage drop of 1,533 kV percentage of 7.93% and power loss of 777.528 kWh percentage of 7.69%.


Sign in / Sign up

Export Citation Format

Share Document