Weld Seam Deviation Detection Base on Laser Welding Pool’s Centroid

2013 ◽  
Vol 690-693 ◽  
pp. 2594-2597
Author(s):  
Ren He Zhen

For detecting weld seams deviation during the industrial actual welding process, IPG YLR-10000 high power fiber laser welding equipment was used during laser welding experiments. A high-speed near-infrared camera was used to capture the dynamic welding pool image sequences. Through studying the change of the features of near-infrared images of the weld pool when the laser beam deviated the weld seam, the centroid of the welding pool could be used as the deviated parameter of the weld seam. The welding pool images coordinates were established, and the ways of rotating and shifting the coordinates were used to build a model to test the welding spots deviation. Finally, the model of the relationship of the actual weld seam deviation and the tested weld seam deviation had been set up by using the regression analysis method. Its validity and feasibility had been tested by analyzing the models correlation R parameters.

2012 ◽  
Vol 201-202 ◽  
pp. 388-391
Author(s):  
Zi Qin Chen ◽  
Xiang Dong Gao

In a high-power fiber laser welding process, the thermal radiation of a weld pool contains plenty of information for welding quality, in which the pool width can reflect the welding stability. Thus, extracting the welding pool width of high-power fiber laser welding based on infrared thermal imaging is an important method for monitoring the weld seam quality. In this paper, we studied the 304 stainless steel welded by a 10kW high-power fiber laser continuously. A near-infrared high-speed sensing camera was used to capture the weld pool images. Image algorithms such as median filtering, gray scale stretching, cutting, dynamic threshold mathematical morphology were applied to extract the weld pool image edge, analyze and detect the weld pool width. Welding experimental results showed that the proposed methods could extract the weld pool width, which could reflect the stability status of high-power fiber laser welding process accurately.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 625 ◽  
Author(s):  
Mingjun Zhang ◽  
Shun Chen ◽  
Yingzhe Zhang ◽  
Genyu Chen ◽  
Zhuming Bi

High-power fiber laser welding is an efficient and effective way to produce heavy section structures. However, there is a significant challenge in producing the welds with free of imperfections such as nail-head-shaped welds, spatters, and root sagging. This is partially due to a lack of understanding of the welding mechanism of high-power fiber laser. In this paper, we were especially interested in the mechanism to improve the appearance of welds, and we focused on the autogenous laser welding on thick stainless steel plates by a 10 kW fiber laser. To look into the relations of process parameters and the quality of welds, a high-speed imaging system was applied to observe the molten pool flow and vapor plume during the welding process. The appearances of welds subjected to different welding conditions were analyzed. The results showed that (1) nail-head-shaped welds were suppressed by using a gas jet during laser welding process. (2) In the forward welding, a gentle upwelling molten metal flow on the rear keyhole wall, a deeper weld pool and a weaker vapor plume resulted in no spatter. (3) The gravity affected the formation of underfills and root sagging significantly during autogenous laser welding of thick plates. (4) When the workpiece was placed vertically in the transverse position, the welding process was stable without an aggregation of molten melt at the back surface. Moreover, the mechanisms of forming root sagging and humps were different at the top surface.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 246
Author(s):  
Yassine Saadlaoui ◽  
Julien Sijobert ◽  
Maria Doubenskaia ◽  
Philippe Bertrand ◽  
Eric Feulvarch ◽  
...  

In this study, an experimental approach was developed to analyze and better understand the laser welding and melting of a powder bed process. Different optical diagnostics tools (high-speed camera, infrared camera, pyrometer, etc.) were applied to measure different physical quantities (molten pool morphology, temperature field, residual stresses, and distortions). As a result, measurements during the laser welding process facilitated the building of a database of experimental results (experimental benchmarks). The study of the melting of a powder bed enabled a better understanding of the physics related to the formation and behavior of the molten pool. These results can be used by researchers to improve and validate numerical simulations of these processes.


2020 ◽  
Vol 62 (10) ◽  
pp. 979-984
Author(s):  
Emine Gündoğdu İş ◽  
Erhan Akman ◽  
Muharrem Yilmaz ◽  
Polat Topuz

Abstract In this study, 6 mm thick plates of Al 6061 T6 alloy are joined by laser welding at four welding speeds (40 mm × s-1, 35 mm × s-1, 25 mm × s-1, and 20 mm × s-1). The welded joints are made using a 4000 W fiber laser welding machine. The effect of laser welding speed on the pores formed in the weld seam was investigated. In this manner, it was found that with a change in laser welding speed the amount of pores formed in the structure also changed. In addition, after the welding process, macroscopic examinations, tensile tests and the hardness tests were made. As a result of the experiments performed, it was determined that, the laser welding speed was highly effective for pore formation.


2011 ◽  
Vol 314-316 ◽  
pp. 932-936
Author(s):  
Xiang Dong Gao ◽  
Ling Mo ◽  
Seiji Katayama

Seam tracking is an important field to obtain good welding quality. During the high-power fiber laser welding, the laser beam focus must be controlled to track the welding seam accurately. A method of detecting the offset between the laser beam focus and the welding seam based on analyzing the keyhole features was researched during high-power fiber laser butt-joint welding of Type 304 austenitic stainless steel plates at a continuous wave fiber laser power of 10 kW. The joint gap width was less than 0.1mm. An infrared sensitive high speed camera was used to capture the thermal images of a molten pool in welding process. Two parameters called the keyhole centroid and keyhole shape were defined as the eigenvalues of seam tracking offset to determine the offset between the laser beam focus and the desired welding seam. The welding experiments confirmed that the offset between the laser beam focus and the welding seam could be monitored and estimated by the keyhole centroid and keyhole shape parameters effectively.


2008 ◽  
Vol 580-582 ◽  
pp. 479-482 ◽  
Author(s):  
Yuji Sakai ◽  
Kazuhiro Nakata ◽  
Takuya Tsumura ◽  
Mitsuji Ueda ◽  
Tomoyuki Ueyama ◽  
...  

Noncombustible magnesium alloy AMC602 (Mg-6mass%Al-2mass%Ca) extruded sheet of 2.0mm thickness was successfully welded using a fiber laser welding process at welding speed of 10m/min at 3kW laser power. Tensile strength of the welded joint was about 82 to 88% of that of the base metal. Vickers hardness, tensile strength and micro structural properties are also discussed.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1308
Author(s):  
Minho Park ◽  
Jisun Kim ◽  
Changmin Pyo ◽  
Jaewoong Kim ◽  
Kwangsan Chun

The demand for LNG-powered ships and related equipment is rapidly increasing among major domestic and foreign carriers due to the strengthened IMO regulations on the sulfur content of ship fuel oil. LNG operation in a cryogenic environment requires a storage tank and fuel supply system that uses steel with excellent brittleness and fatigue strength. A ship using LNG is very sensitive to explosion and fire. For this reason, 9% Ni is often used, because ships require high quality products with special materials and structural technologies that ensure operability at cryogenic temperatures. However, research to derive uniform welding quality is urgent because the deterioration of weld quality in the 9% Ni steel welding process is caused by high process difficulty and differences in welding quality depending on a welder’s skill set. This study proposes a method to guarantee a uniform quality of 9% Ni steel in a fiber laser welding process by categorizing weld joint hardness according to the dilution ratio of a base material and establishing a standard for quantitative evaluation.


2013 ◽  
Vol 40 (5) ◽  
pp. 0503001
Author(s):  
裴莹蕾 Pei Yinglei ◽  
单际国 Shan Jiguo ◽  
任家烈 Ren Jialie

Sign in / Sign up

Export Citation Format

Share Document