INVESTIGATION OF HUMPING FORMATION BASED ON MELT FLOW ANALYSIS IN HIGH-SPEED LASER WELDING PROCESS

2013 ◽  
Vol 49 (6) ◽  
pp. 725 ◽  
Author(s):  
Yinglei PEI ◽  
Aiping WU ◽  
Jiguo SHAN ◽  
Jialie REN
2013 ◽  
Vol 40 (5) ◽  
pp. 0503001
Author(s):  
裴莹蕾 Pei Yinglei ◽  
单际国 Shan Jiguo ◽  
任家烈 Ren Jialie

2012 ◽  
Vol 201-202 ◽  
pp. 1076-1079
Author(s):  
De Yong You ◽  
Xiang Dong Gao

Laser welding process has been widely used in industrial manufacturing. The purpose of this paper is to explore the inter-relation between laser welding results and the laser-induced plume behavior. High-power disk laser welding of stainless steel type304 was performed at different welding speeds. Combing the high speed camera and ultraviolet sensing filter, the plume image sequences of laser welding process have been obtained. Plume features including plume volume and plume flowing direction have been extracted by using high-speed photography and image processing technology. The dynamic behavior of laser-induced plume was investigated. The results showed that the laser-induced plume feature, especially the plume volume, was closely related to laser welding process conditions.


2012 ◽  
Vol 201-202 ◽  
pp. 388-391
Author(s):  
Zi Qin Chen ◽  
Xiang Dong Gao

In a high-power fiber laser welding process, the thermal radiation of a weld pool contains plenty of information for welding quality, in which the pool width can reflect the welding stability. Thus, extracting the welding pool width of high-power fiber laser welding based on infrared thermal imaging is an important method for monitoring the weld seam quality. In this paper, we studied the 304 stainless steel welded by a 10kW high-power fiber laser continuously. A near-infrared high-speed sensing camera was used to capture the weld pool images. Image algorithms such as median filtering, gray scale stretching, cutting, dynamic threshold mathematical morphology were applied to extract the weld pool image edge, analyze and detect the weld pool width. Welding experimental results showed that the proposed methods could extract the weld pool width, which could reflect the stability status of high-power fiber laser welding process accurately.


Author(s):  
J. Zhou ◽  
H. L. Tsai ◽  
P. C. Wang

Humping is a frequently observed welding defect in laser welding which is caused when the welding speed exceeds a certain limit while the other welding conditions remain unchanged. Humping is characterized by the appearance of unsmooth and discontinuity of humps at the surface of the weld. The formation of humping is generally understood to be caused by the complex heat transfer and melt flow in a high speed welding process. However, so far the fundamental mechanisms causing humping are not fully understood, and research on determining the onset of humping has been based on the “trial-and-error” procedure. In this paper, mathematical models previously developed by the authors for the transport phenomena in laser welding have been extended to investigate the formation of the humping defect. In this study, the transient heat transfer and melt flow in the weld pool during the keyhole formation and collapse, and melt solidification are calculated for a 3-D moving laser welding. Different humping patterns have been predicted by the present study in different laser power levels and welding speeds. From the present study, it was found that the formation of humping in laser welding is caused by the interplay between two important factors: a) the strong liquid metal flow in the real part of the keyhole induced mainly by the laser recoil pressure and b) the rapid solidification rate of the liquid metal. The humping pattern can be well explained by the calculated melt flow and the solidification process.


Sign in / Sign up

Export Citation Format

Share Document