Interaction between Sodium Molybdate and FSWed Wled of 5083 Effected by Time

2013 ◽  
Vol 699 ◽  
pp. 645-649
Author(s):  
Chang Bin Shen

Similar welds composed of 5083 were produced by friction stir welding. In the solution of 0.2 M NaHSO3 and 0.6 M NaCl, with the addition of a given concentration sodium molybdate as the inhibitor, the electrochemical corrosion behaviors of the friction stir welds (FSW) and 5083 were comparatively investigated by potentiodynamic polarization curve tests and electrochemical impedance spectra (EIS) at the ambient temperature for different test periods. The results indicated that : with the extension of period, the inhibition efficiencies (IE) for both the weld and 5083 base materials enhanced, at the same period, the inhibition efficiency (IE) for the weld was beyond that for 5083 base materials, sodium molybdate may be thought of as an effective inhibitor for 5083 aluminum alloy, the interaction between inhibitor and weld is stronger than that between inhibitor and base materials.

2013 ◽  
Vol 785-786 ◽  
pp. 101-104
Author(s):  
Chang Bin Shen

Similar welds composed of 5083 were produced by friction stir welding. In the solution of 0.2 M NaHSO3 and 0.6 M NaCl, with the addition of a given concentration sodium molybdate as the inhibitor, the electrochemical corrosion behaviors of the friction stir welds (FSW) and 5083 were comparatively investigated by potentiodynamic polarization curve tests and electrochemical impedance spectra (EIS) for different test temperatures (herein, 25°C,30°C,35°C,40°C). The results indicated that at 30°C, the anti-corrosion property of 5083 FSW weld and parent material was superior to those of the other temperatures.


2012 ◽  
Vol 249-250 ◽  
pp. 870-873
Author(s):  
Chang Bin Shen

Similar welds composed of 5083 were produced by friction stir welding. In the solution of 0.2 M NaHSO3 and 0.6 M NaCl, the electrochemical corrosion behaviors of the friction stir welds (FSW) and 5083 were comparatively investigated by static weight loss experiments and potentiodynamic polarization curve tests at the ambient temperature. The results indicated that the average corrosion rate of the weld was less than that of 5083. Then, sodium molybdate was added to the corrosive solution and its effect on the corrosion behaviors of the weld and parent metal was comparatively assessed. The inhibition efficiency (IE) for the weld was beyond that for 5083 base materials, sodium molybdate may be thought of as an effective inhibitor.


2010 ◽  
Vol 139-141 ◽  
pp. 299-302 ◽  
Author(s):  
C.B. Shen ◽  
Y. Chen ◽  
J.P. Ge

At the ambient temperature, in the 0.2 M NaHSO3 and 0.6 M NaCl solution, by gravimetric test, potentiodynamic polarization curve test and electrochemical impedance spectra (EIS), the electrochemical behavior of 5083/6082 friction stir welding dissimilar weld and two parent materials were comparatively investigated. The results indicated: at the given processing parameters, the anti-corrosion ability of the dissimilar weld was superior to those of the 6082 and 5083 parent materials.


2020 ◽  
Vol 34 (2) ◽  
pp. 407-418
Author(s):  
F. E. Abeng ◽  
M. E. Ikpi ◽  
V. C. Anadebe ◽  
W. Emori

The aim of this research is to evaluate the inhibitive effect of metolazone on API 5L X-52 steel in 2 M HCl solution using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization techniques within a temperature range of 303 to 323 K. Scanning electron microscopy (SEM) was also employed to study the morphology of the corroded coupons in 2 M HCl solution and in the presence of the inhibitor. The efficiency of the inhibition depends on the concentration of metolazone and reaction system temperature. The maximum inhibition efficiency values were 92.7 and 90.7%, respectively, for both EIS and polarization techniques at the temperature of 303 K. The electrochemical impedance spectra (EIS) studies reveal that the process of inhibition is through charge transfer. Potentiodynamic polarization (PDP) studies showed that metolazone is mixed-type inhibitor.  The metolazone adsorption characteristics on API 5L X-52 steel surface was found to be spontaneous and obeyed Langmuir adsorption isotherm and the mechanism of adsorption suggest chemisorptions. The inhibition efficiency of metolazone drug obtained by electrochemical methods was in good relationship with each other.                     KEY WORDS: Metolazone drug, API 5L X-52 Steel, SEM, Electrochemical, Corrosion inhibition   Bull. Chem. Soc. Ethiop. 2020, 34(2), 407-418 DOI: https://dx.doi.org/10.4314/bcse.v34i2.16


CORROSION ◽  
10.5006/3490 ◽  
2021 ◽  
Author(s):  
Caiyun Bai ◽  
Peifeng Li ◽  
Tieqiang Gang ◽  
Jian Li ◽  
Min Wei ◽  
...  

Ti-6Al-4V alloys are typically used for biomedical implants, aerospace components and offshore equipment, where corrosion resistance is critical. In the present paper, the electrochemical corrosion behaviors of Ti-6Al-4V alloys made by different traditional processing and 3D printing technologies in seawater, 3.5 wt.% NaCl, 3.5 wt.% HCl, 5 wt.% HCl and 10 wt.% HCl solutions were studied through polarization curve and electrochemical impedance spectra (EIS) analyses. The influences of microstructure and printing parameters on the corrosion behaviors of Ti-6Al-4V alloys were analyzed. In addition, the corrosion current density, film resistance and charge transfer resistance of traditionally processed Ti-6Al-4V and 3D printed Ti-6Al-4V in the five solutions were compared. The results show that Ti-6Al-4V possesses a better corrosion resistance in seawater than in 3.5 wt.% NaCl, and that the corrosion rate increases with the HCl concentration. Besides, 3D printed Ti-6Al-4V shows a higher corrosion rate in comparison with traditionally processed Ti-6Al-4V because pores are effortless to enrich Cl-. Finally, the ratio of laser power to its scanning speed and the phase constituent composition of the alloy have slight influences on its electrochemical corrosion behavior. It is suggested that for the 3D printed alloy, the deterioration of mechanical properties induced by corrosion damage during servicing should be assessed and considered.


2011 ◽  
Vol 311-313 ◽  
pp. 2309-2314 ◽  
Author(s):  
Wen Xia Zhu ◽  
Zhe Lü ◽  
Le Xin Wang ◽  
Xiao Yan Guan ◽  
Xin Yan Zhang

°Abstract. In order to develop new cathodes for reduced temperature SOFCs, Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Ag composite cathode was investigated in intermediate-temperature Solid Oxide Fuel Cells (IT-SOFCs). The XRD results suggested that no chemical reactions between BSCF and Ag in the composite cathode were found. The resistance measurements showed that the addition of Ag into BSCF improved electrical conductivity of pure BSCF, and the improved conductivity resulted in attractive cathode performance. In addition, electrochemical impedance spectra exhibited the better performance of BSCF-Ag composite cathodes than pure BSCF, e.g., the polarization resistance value of BSCF-Ag was only 0.36Ω cm2 at 650°C, which was nearly 80% lower than that of BSCF electrode. Polarization curves showed the overpotential decreased with the addition of Ag. The current density value of BSCF-Ag was 0.88Acm-2 under –120mV, about five times of that BSCF measured at 650°C. As a summary, compared to a pure BSCF cathode, it was found that adding Ag in the cathode enhanced the BSCF performance significantly.


2011 ◽  
Vol 56 (22) ◽  
pp. 7467-7475 ◽  
Author(s):  
Niket S. Kaisare ◽  
Vimala Ramani ◽  
Karthik Pushpavanam ◽  
S. Ramanathan

Sign in / Sign up

Export Citation Format

Share Document