Dielectric Properties of the Composite Insulator Mica Epoxy-Novolac

2013 ◽  
Vol 701 ◽  
pp. 47-52
Author(s):  
Doina Elena Gavrilă ◽  
Horia Catalin Gavrilă

As electric insulators of the copper conductors in the electric generators of alternative current or in electric motors of high tension, there are used with priority the composite crosslinked mica-epoxy. Pre-impregnated band with solvent was introduced, the impregnation being performed with phenolic-novolac resin. The studied material got superior dielectric properties at function temperatures corresponding to the insulation class F(155C). Its main components are: mica paper (53%), glass cloth (13%) and the basic epoxy phenolic-novolac resin. The complex permittivity and conductivity were determined with the Time Domain Spectrometer (TDS); the apparatus allows the determination of the electric values in the domain of frequencies: very large domain of frequencies. The temperature varied in the domain 23-190C with the help of an oven. The purpose of this article is to report the dielectric properties of mica-epoxy-novolac composite insulator, for which very few data have so far been published.

Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1240
Author(s):  
Fuyao Yan ◽  
Yiheng Wang ◽  
Ying Yang ◽  
Lei Zhu ◽  
Hui Hu ◽  
...  

Surface exchange coefficient (k) and bulk diffusion coefficient (D) are important properties to evaluate the performance of mixed ionic-electronic conducting (MIEC) ceramic oxides for use in energy conversion devices, such as solid oxide fuel cells. The values of k and D are usually estimated by a non-linear curve fitting procedure based on electrical conductivity relaxation (ECR) measurement. However, the rate-limiting mechanism (or the availability of k and D) and the experimental imperfections (such as flush delay for gaseous composition change, τf) are not reflected explicitly in the time–domain ECR data, and the accuracy of k and D demands a careful sensitivity analysis of the fitting error. Here, the distribution of characteristic times (DCT) converted from time–domain ECR data is proposed to overcome the above challenges. It is demonstrated that, from the DCT spectrum, the rate-limiting mechanism and the effect of τf are easily recognized, and the values of k, D and τf can be determined conjunctly. A strong robustness of determination of k and D is verified using noise-containing ECR data. The DCT spectrum opens up a way towards visible and credible determination of kinetic parameters of MIEC ceramic oxides.


Author(s):  
Mark Cerkovnik ◽  
S. Chang ◽  
Cary Griffin

Hybrid risers represent an excellent way to isolate the riser from most of the host vessel motions and thereby limit riser fatigue. A common arrangement features the riser supported by a buoyancy can via a tether chain. The tether chain is a cheap simple way to make the connection while providing flexibility for installation. However, in service the tether is under very high tension, and the chain is not really flexible in the face of small amplitude fatigue loads. The friction effectively “welds” the chain together. Moment and torque input to the system by first order vessel motions and vortex induced vibrations are carried through the chain and induce fatigue loading in the links. Analysis of the chain can be problematic because the determination of the detailed stress in the chain requires a refined FEA model with contact element between the links. From the global sense the analysis may require running hundreds of sea-state realizations in the time domain and the vortex induced vibration (VIV) assessment of thousands of current profiles. In this paper an efficient numerical method is described to rigorously determine fatigue damage at locations throughout the chain.


1999 ◽  
Vol 121 (1) ◽  
pp. 37-41 ◽  
Author(s):  
W. A. Moussa ◽  
A. N. AbdelHamid

A practical technique is investigated for the determination of dynamic stresses in pipelines through the use of finite element method (FEM) and field measurement vibrations at selected points. Numerical simulation of a randomly loaded pipeline structure is used to establish the validity of the technique in the time domain. The analysis is carried out for a fixed-hinged pipe model. The results show that lack of coincidence between the vibration measurement points (VMPs) and the exciting force, or the use of only translational vibration measurements (TVMs) produce an approximate stress picture. The extent of the “error” in these cases is found to depend on the density of the VMPs and the proximity between these points and the exciting force location. A safety-related risk assessment is applied to find the minimum distance between measuring points that is needed to meet design codes reliability specifications.


2020 ◽  
Vol 1 (1) ◽  
pp. 21
Author(s):  
Syahrial Ayub ◽  
Muhammad Zuhdi ◽  
Muhammad Taufik ◽  
Gunawan Gunawan

Volcanic earthquakes of mount Merapi have been investigated periodically. The investigation aims to determine the hypocenter and epicenter of mount Merapi's volcanic earthquake using wave polarization analysis. The analysis was carried out in three domains, which are the time domain, the frequency domain, and the space domain. The analysis in the time domain was conducted by the arrival time of the volcanic earthquake, and the analysis in the frequency domain was done by observing the spectrum to get information on source frequency and bandwidth passed from polarization analysis, while the analysis in the space domain was conducted especially on hypocenter determination of the volcanic earthquakes. The analysis leads to the frequency of source 6 Hz and a bandwidth of 0.1 Hz. Thus, the hypocenter of volcanic earthquakes by polarization analysis was distributed to depth from 670 m to 3250 m from Merapi's top


Sign in / Sign up

Export Citation Format

Share Document