Finite Element Analysis of Glass Lens Molding Process

2013 ◽  
Vol 706-708 ◽  
pp. 1353-1356
Author(s):  
Ling Jiang Ouyang ◽  
Jian Zhang

Glass lens molding process is a high-volume fabrication method for producing optical components. In this paper, combined with thermal-mechanical coupled analysis and finite element method (FEM) simulation, An axisymmetric model of the GMP is built. Based on this model, FEM on the basis of the commercial FEM software MSC.Marc is conducted to study the pressing process in glass molding. The effects of molding temperature, pressing velocity, and friction on maximum residual stress are calculated. The result shows that the stress decreases at the higher molding temperature, lower pressing velocity and friction.

2012 ◽  
Vol 497 ◽  
pp. 245-249
Author(s):  
Dao Cheng Zhang ◽  
Ke Jun Zhu ◽  
Yong Jian Zhu ◽  
Shao Hui Yin ◽  
Jian Wu Yu

Glass lens molding is a high-volume fabrication method for producing optical components. In this paper, combined with the orthogonal test method and finite element method (FEM) simulation, the coupled thermo-mechanical analysis was carried out to analyze the key process factors. In order to reduce the testing time, an orthogonal test with three sets of level factors and three parameters is conducted to obtain the optimal molding process parameters. The result shows that the most significant parameter is molding velocity, the other effect parameters are molding temperature and friction coefficient. According to the previous analysis of orthogonal experiment, it is shown that the best optimal finishing process parameters were A2B1C1.


2012 ◽  
Vol 497 ◽  
pp. 240-244 ◽  
Author(s):  
Ke Jun Zhu ◽  
Shao Hui Yin ◽  
Jian Wu Yu ◽  
Yong Jian Zhu ◽  
Song Jin ◽  
...  

Glass molding is a high-volume fabrication method for producing optical components. Non-isothermal glass molding press (NGM) was proposed to fabricate optical glass, and its characteristics were studied by finite element method (FEM) simulation. The coupled thermo-mechanical analysis was carried out to analyze the key factors such as temperature distribution, stress distribution and strain distribution. The non-isothermal and isothermal glass molding (IGM) was studied, and optimal temperature match between glass and mold was obtained.


2011 ◽  
Vol 399-401 ◽  
pp. 1806-1811
Author(s):  
Yong Hong Chen ◽  
Peng Chen ◽  
Ai Qin Tian

The finite element model of the roof of aluminum high-speed train was established, double ellipsoid heat source was employed, and heat elastic-plastic theory was used to simulate welding residual stress of the component under different welding sequence based on the finite element analysis software SYSWELD. The distribution law of welding residual stress was obtained. And the effects of the welding sequence on the value and distribution of residual stress was analyzed. The numerical results showed that the simulation data agree well with experimental test data. The maximum residual stress appears in the weld seam and nearby. The residual stress value decreases far away from the welding center. Welding sequence has a significant impact on the final welding residual stress when welding the roof of aluminum body. The side whose residual stress needs to be controlled should be welded first.


2010 ◽  
Vol 159 ◽  
pp. 697-702
Author(s):  
Ying Zhou ◽  
Ya Xi Tan

A three-dimensional coupled fluid-thermal finite element simulation model has been developed to provide analyzing distribution of velocity and temperature of nine-spacer nozzle by using FEM simulation of FLOTRAN module in ANSYS 6.0. To explore fluid-thermal analysis of the flow fields of nine-spacer nozzle of aluminum roll-casting, stricter analysis of postprocessing result was conducted by MATLAB. It was concluded that flow field of nine-spacer nozzle was able to match cooling capacity of cast rollers, but nine-spacer nozzle’s geometric flaw didn’t suit for working in the case of speed increasing of the drawing-sheet and thickness reducing of the aluminium sheet during roll casting.


2010 ◽  
Vol 97-101 ◽  
pp. 2965-2969
Author(s):  
Yong Jian Zhu ◽  
Shao Hui Yin ◽  
Wei Qing Pan ◽  
Yu Feng Fan ◽  
Kun Tang

The lens molding technology has become a promising fabrication method for glass lens, especially for aspheric glass lens in batch. Because during the real compression molding, the error compensation for mold shape turns very difficult, the mold needs to be repaired repeatedly to meet the requirements of lens molding. To solve this problem, a cooperative design scheme is proposed. However, the scheme is not limited to solving the mold repairing; it also aims to providing the integrated and optimal design for aspheric glass-lens mold. In fact, the cooperative scheme is a collaborative software platform, which integrates with data processing, optical design, finite element analysis, error compensation and mechanical design for lens molding. On this platform, users only need to submit the (camera) lens parameters or measured data of aspheric lens, and then the platform can provide the final mold drawings, which will be input in the CNC software of ultra-precision machine and guide the mold fabrication. Meanwhile, the cooperative platform is Network-based PDM system, so designers could remotely communicate with it and help to finish the mold design jointly. In this case, the cooperative design could tremendously improve the efficiency and accuracy of lens molding.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Afef Bougharriou ◽  
Mohieddine Jeridi ◽  
Mohamed Hdiji ◽  
Anoir Boughrira ◽  
Kacem Saï

The electric bubbles are a useful product made of PMMA material. They are produced by the stretch blow molding process. Thickness, which reflects the quality of the electric bubble, is a crucial parameter that deserves special attention for the molding process. In this work, finite element simulations of the stretch blow molding process are performed aiming at the determination of the preform geometry to ensure homogeneous thickness of the finished product. The geometrical parameters of the preform are optimized allowing a better homogeneity thickness compared to existing data. The predicted parameters allow the improvement of the thickness distribution. The standard deviation of the thickness is reduced to about 95% compared to the existing bubble.


Author(s):  
Sung Jin Yoon ◽  
Tae Jin Shin ◽  
Jae Sang Lee ◽  
Sang Moo Hwang

This paper describes in detail the deformation behavior of the rolls and strip predicted from the three-dimensional finite element analysis of skin-pass rolling. The predictions are made on the basis of the coupled analysis of elastic deformation of the rolls and elastic–plastic deformation of the strip. Predictions from the proposed finite element (FE) model are compared with experimental data from laboratory-scale cold rolling mills. Then, proposed are models for the prediction of the roll force profile and for the prediction of the residual stress profile. The prediction accuracy of the models is examined through comparison with the predictions from the FE model.


Sign in / Sign up

Export Citation Format

Share Document