The Mobile Node Localization Algorithm Based on Monte Carlo

2013 ◽  
Vol 712-715 ◽  
pp. 1847-1850
Author(s):  
Jun Gang Zheng ◽  
Cheng Dong Wu ◽  
Zhong Tang Chen

There exist some mobile node localization algoriths in wireless sensor netwok,which require high computation and specialized hardware and high node large density of beacon nodes.The Monte Carlo localization method has been studied and an improved Monte Carlo node localization has been proposed. Predicting the trajectory of the node by interpolation and combing sampling box to sampling. The method can improve the efficiency of sampling and accuracy. The simulation results show that the method has achieved good localization accuracy.

2013 ◽  
Vol 401-403 ◽  
pp. 1800-1804 ◽  
Author(s):  
Shi Ping Fan ◽  
Yong Jiang Wen ◽  
Lin Zhou

There are some common problems, such as low sampling efficiency and large amount of calculation, in mobile localization algorithm based on Monte Carlo localization (MCL) in wireless sensor networks. To improve these issues, an enhanced MCL algorithm is proposed. The algorithm uses the continuity of the nodes movement to predict the area where the unknown node may reach, constructs high posteriori density distribution area, adds the corresponding weights to the sample points which fall in different areas, and filters the sample points again by using the position relations between the unknown node and its one-hop neighbors which include anchor nodes and ordinary nodes. Simulation results show that the localization accuracy of the algorithm is superior to the traditional localization algorithm. Especially when the anchor node density is lower or the unknown nodes speed is higher, the algorithm has higher location accuracy.


2014 ◽  
Vol 543-547 ◽  
pp. 3256-3259 ◽  
Author(s):  
Da Peng Man ◽  
Guo Dong Qin ◽  
Wu Yang ◽  
Wei Wang ◽  
Shi Chang Xuan

Node Localization technology is one of key technologies in wireless sensor network. DV-Hop localization algorithm is a kind of range-free algorithm. In this paper, an improved DV-Hop algorithm aiming to enhance localization accuracy is proposed. To enhance localization accuracy, average per-hop distance is replaced by corrected value of global average per-hop distance and global average per-hop error. When calculating hop distance, unknown nodes use corresponding average per-hop distance expression according to different hop value. Comparison with DV-Hop algorithm, simulation results show that the improved DV-Hop algorithm can reduce the localization error and enhance the accuracy of sensor nodes localization more effectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Hua Wu ◽  
Ju Liu ◽  
Zheng Dong ◽  
Yang Liu

In this paper, a hybrid adaptive MCB-PSO node localization algorithm is proposed for three-dimensional mobile wireless sensor networks (MWSNs), which considers the random mobility of both anchor and unknown nodes. An improved particle swarm optimization (PSO) approach is presented with Monte Carlo localization boxed (MCB) to locate mobile nodes. It solves the particle degeneracy problem that appeared in traditional MCB. In the proposed algorithm, a random waypoint model is incorporated to describe random movements of anchor and unknown nodes based on different time units. An adaptive anchor selection operator is designed to improve the performance of standard PSO for each particle based on time units and generations, to maintain the searching ability in the last few time units and particle generations. The objective function of standard PSO is then reformed to make it obtain a better rate of convergence and more accurate cost value for the global optimum position. Furthermore, the moving scope of each particle is constrained in a specified space to improve the searching efficiency as well as to save calculation time. Experiments are made in MATLAB software, and it is compared with DV-Hop, Centroid, MCL, and MCB. Three evaluation indexes are introduced, namely, normalized average localization error, average localization time, and localization rate. The simulation results show that the proposed algorithm works well in every situation with the highest localization accuracy, least time consumptions, and highest localization rates.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 343 ◽  
Author(s):  
Dezhi Han ◽  
Yunping Yu ◽  
Kuan-Ching Li ◽  
Rodrigo Fernandes de Mello

The Distance Vector-Hop (DV-Hop) algorithm is the most well-known range-free localization algorithm based on the distance vector routing protocol in wireless sensor networks; however, it is widely known that its localization accuracy is limited. In this paper, DEIDV-Hop is proposed, an enhanced wireless sensor node localization algorithm based on the differential evolution (DE) and improved DV-Hop algorithms, which improves the problem of potential error about average distance per hop. Introduced into the random individuals of mutation operation that increase the diversity of the population, random mutation is infused to enhance the search stagnation and premature convergence of the DE algorithm. On the basis of the generated individual, the social learning part of the Particle Swarm (PSO) algorithm is embedded into the crossover operation that accelerates the convergence speed as well as improves the optimization result of the algorithm. The improved DE algorithm is applied to obtain the global optimal solution corresponding to the estimated location of the unknown node. Among the four different network environments, the simulation results show that the proposed algorithm has smaller localization errors and more excellent stability than previous ones. Still, it is promising for application scenarios with higher localization accuracy and stability requirements.


2013 ◽  
Vol 303-306 ◽  
pp. 201-205
Author(s):  
Shao Ping Zhang

Localization technology is one of the key supporting technologies in wireless sensor networks. In this paper, a collaborative multilateral localization algorithm is proposed to localization issues for wireless sensor networks. The algorithm applies anchor nodes within two hops to localize unknown nodes, and uses Nelder-Mead simplex optimization method to compute coordinates of the unknown nodes. If an unknown node can not be localized through two-hop anchor nodes, it is localized by anchor nodes and localized nodes within two hops through auxiliary iterative localization method. Simulation results show that the localization accuracy of this algorithm is very good, even in larger range errors.


2013 ◽  
Vol 475-476 ◽  
pp. 579-582 ◽  
Author(s):  
Dong Yao Zou ◽  
Teng Fei Han ◽  
Dao Li Zheng ◽  
He Lv

The node localization is one of the key technologies in wireless sensor networks. To the accurate positioning of the nodes as the premise and foundation, this paper presents a centroid localization algorithm based on Cellular network. First, the anchor nodes are distributed in a regular hexagonal cellular network. Unknown nodes collect the RSSI of the unknown nodes nearby, then select the anchor nodes whose RSSI is above the threshold. Finally, the average of these anchor nodes coordinates is the positioning results. MATLAB simulation results show that localization algorithm is simple and effective, it applies to the need for hardware is relatively low.


2012 ◽  
Vol 562-564 ◽  
pp. 1234-1239
Author(s):  
Ming Xia ◽  
Qing Zhang Chen ◽  
Yan Jin

The beacon drifting problem occurs when the beacon nodes move accidentally after deployment. In this occasion, the localization results of sensor nodes in the network will be greatly affected and become inaccurate. In this paper, we present a localization algorithm in wireless sensor networks in beacon drifting scenarios. The algorithm first uses a probability density model to calculate the location reliability of each node, and in localization it will dynamically choose nodes with highest location reliabilities as beacon nodes to improve localization accuracy in beacon drifting scenarios. Simulation results show that the proposed algorithm achieves its design goals.


2017 ◽  
Vol 13 (05) ◽  
pp. 4 ◽  
Author(s):  
Peng An

In the wireless sensor network, there is a consistent one-to-one match between the information collected by the node and the location of the node. Therefore, it attempts to determine the location of unknown nodes for wireless sensor networks. At present, there are many kinds of node localization methods. Because of the distance error, hardware level, application environment and application costs and other factors, the positioning accuracy of various node positioning methods is not in complete accord. The objective function is established and algorithm simulation experiments are carried out to make a mobile ronot node localization.  The experimnettal results showed that  the proposed algorithm can achieve higher localization precision in fewer nodes. In addition, the localization algorithm was compared with the classical localization algorithm. In conclusion, it is verified that the localization algorithm proposed in this paper has higher localization accuracy than the traditional classical localization algorithm when the number of nodes is larger than a certain number


2010 ◽  
Vol 39 ◽  
pp. 510-516
Author(s):  
Ming Wang ◽  
Shou Jun Bai ◽  
Huan Bao Wang

Most of the proposed algorithms focus on static networks of sensors with either static or mobile anchors, in which the Monte Carlo localization algorithm is a typical one for localizing nodes in a mobile wireless sensor network. But the radio range being all different or inconstant in this algorithm leads to reduce the accuracy of localization and the efficiency of the algorithm itself. In this article, we propose the novel rang-based stochastic Monte Carlo localization algorithm for wireless sensor networks specifically designed with mobility to improve the accuracy of localization by dealing with the different radio ranges of sensors, and being bound to the narrow sampling area. Our simulation experimental results show that the rang-based stochastic Monte Carlo localization algorithm has improved the accuracy and stability of the estimated locations.


Sign in / Sign up

Export Citation Format

Share Document