Die Compensation Design for Stamping a High Strength Automotive Bumper Inner

2013 ◽  
Vol 712-715 ◽  
pp. 796-799
Author(s):  
Fuh Kuo Chen ◽  
Shi Wei Liu

Due to the requirement of lightweight in the automotive body structure design, the application of advanced high strength steel (AHSS) has been widely adopted in the automotive industry. However, the technical difficulties are also experienced in the forming process of stamping the advanced high strength steel. One of the major defects is springback. In this study, both the experimental approach and the finite element analysis were adopted to examine the springback phenomenon occurred in the stamping of a front bumper inner made of 590Y advanced high strength steel. The die compensation approach was employed to adjust the amount of springback to make the dimension of the automotive part conforming to the design specification. The accurate dimension of the production part validates the finite element analysis and the die compensation approach adopted in the present study provides a useful guideline for improving the springback defect in the stamping of advanced high strength steel sheets.

2021 ◽  
Vol 877 ◽  
pp. 83-89
Author(s):  
Aeksuwat Nakwattanaset ◽  
Surasak Suranuntchai

The manufacturing industries for automotive parts aim to develop technologies for reducing vehicle weight in order to decrease fuel consumption. However, passive safety function for drivers and passengers must not be impaired or should be even improved. Therefore, advanced high strength steel sheet plays more and more important role in designing automotive components. Nowadays, prediction of formability for sheet metal stamping has high capability more than the past. The major challenge is springback prediction. Moreover, it assists in the tooling design to correctly compensate for springback. Especially in automotive production, springback effects have been generally exhibited distinct after forming process of the high strength steel sheets. The springback effect occurred in the deformed state of metal parts must be taken into account by designing any sheet metal panels. Then, the purpose of the present research is to investigate the springback phenomenon of an automotive part named Reinforcement Rocker RL made from an advanced high strength steel grade JAC780Y, after stamping. In addition, the tools design has been carried out. Finite Element (FE) program known as DYNAFORM (based on LS-DYNA solver), has been applied to analyze and improve the springback effect on such forming part. An anisotropic material model according to type 36 (MAT_036 3-PARAMETER_BARAT) was applied. The results obtained from simulations were compared with required parts in each section. Then, the die surface from compensation in 2nd step forming was modified to use. Finally, the simulation part was verified with the real stamping part. It was found that the finite element simulation showed high capability for prediction and compensation of springback in high strength steel sheets forming.


2015 ◽  
Vol 809-810 ◽  
pp. 235-240
Author(s):  
Catalina Maier ◽  
Robin Gauthier

Roller leveling is a forming process which used to minimize flatness imperfection and residual stresses by repeated forming process of a sheet metal. The determination of the machine settings must be very accurate and ask a precise mechanical study. In order to determine an algorithm which can predict the leveling quality according to the machine settings we start by a theoretical model of stress evolution during the process. The plastification ratio is deducted from this one and the values obtained by this approach are compared whit experimental values. The finite element analysis is performed, in second step in order to assure a good accuracy of the prediction algorithm. Theoretical study determines a minimum of the plastification ratio according to the machine settings. The finite element analysis gives more accurate results due to the consideration of different characteristics of the process, neglected by the theoretical model: cumulative effect of bending/unbending with stretching of the sheet during the passing between each couple of rolls, boundary conditions at the limit of the material deformed by two adjoining couples of rolls, friction force.


2011 ◽  
Vol 422 ◽  
pp. 842-845
Author(s):  
Xue Ping Wang ◽  
Ying Zhang ◽  
Pan Li ◽  
Zhen Wei Zhang

This paper primarily simulates the heat exchange part’s stress and strain situation under the load of temperature and gravity and their coupling impact aiming at obtaining the stress and deformation distribution. The authors took advantage of the method of the finite element analysis to study the stress and strain situation. Through the analysis, each part of the transfer’s stress and strain can be calculated. The conclusion of this paper provides the basis for the further enhancement of the machine life and optimization of the structure design.


2013 ◽  
Vol 482 ◽  
pp. 15-19
Author(s):  
Chen Xing Yang ◽  
Zheng Liu ◽  
Li Ping Sun ◽  
Jiong Li

Based on the experimental study of shear strengthened of reinforced concrete rectangular beam strengthened by high-strength steel wire mesh and polymer mortar , the finite element extended analysis was used. The finite element analysis software showed that with the increasing of the strand dosage and reinforcement strand length,the shear strength and stiffness of strengthened members improved . However,with the increasing of shear span ratio , the shear strength and stiffness reduced obviously .


Sign in / Sign up

Export Citation Format

Share Document