The Significance of Experiment in the Finite Element Analysis of a Pulley Forming Process

Author(s):  
Xiao Hang Liu ◽  
M. Daniels ◽  
B. Shirvani
2015 ◽  
Vol 809-810 ◽  
pp. 235-240
Author(s):  
Catalina Maier ◽  
Robin Gauthier

Roller leveling is a forming process which used to minimize flatness imperfection and residual stresses by repeated forming process of a sheet metal. The determination of the machine settings must be very accurate and ask a precise mechanical study. In order to determine an algorithm which can predict the leveling quality according to the machine settings we start by a theoretical model of stress evolution during the process. The plastification ratio is deducted from this one and the values obtained by this approach are compared whit experimental values. The finite element analysis is performed, in second step in order to assure a good accuracy of the prediction algorithm. Theoretical study determines a minimum of the plastification ratio according to the machine settings. The finite element analysis gives more accurate results due to the consideration of different characteristics of the process, neglected by the theoretical model: cumulative effect of bending/unbending with stretching of the sheet during the passing between each couple of rolls, boundary conditions at the limit of the material deformed by two adjoining couples of rolls, friction force.


2011 ◽  
Vol 460-461 ◽  
pp. 44-47
Author(s):  
Wei Hua Kuang

The cold expanding diameter process was simulated by the software of DEFORM. The finite element model of tube and dies were built. The object position definition, the inter object setting, movement definition and simulation step were correctly set. The deformation, total velocity distribution and equivalent stress distribution were predicted. The numerical simulation results showed that the finite element analysis could exactly describe the plastic deformation and stress distribution during the forming process.


2013 ◽  
Vol 712-715 ◽  
pp. 796-799
Author(s):  
Fuh Kuo Chen ◽  
Shi Wei Liu

Due to the requirement of lightweight in the automotive body structure design, the application of advanced high strength steel (AHSS) has been widely adopted in the automotive industry. However, the technical difficulties are also experienced in the forming process of stamping the advanced high strength steel. One of the major defects is springback. In this study, both the experimental approach and the finite element analysis were adopted to examine the springback phenomenon occurred in the stamping of a front bumper inner made of 590Y advanced high strength steel. The die compensation approach was employed to adjust the amount of springback to make the dimension of the automotive part conforming to the design specification. The accurate dimension of the production part validates the finite element analysis and the die compensation approach adopted in the present study provides a useful guideline for improving the springback defect in the stamping of advanced high strength steel sheets.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


2013 ◽  
Vol 83 (7) ◽  
pp. 1087-1096 ◽  
Author(s):  
A. Ranjbaran ◽  
H. Rousta ◽  
M. O. Ranjbaran ◽  
M. A. Ranjbaran ◽  
M. Hashemi ◽  
...  

2012 ◽  
Vol 24 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Yu-Chi Chen ◽  
Wen-Ching Ko ◽  
Han-Lung Chen ◽  
Hsu-Ching Liao ◽  
Wen-Jong Wu ◽  
...  

We propose a model to give us a method to investigate the characteristic three-dimensional directivity in an arbitrarily configured flexible electret-based loudspeaker. In recent years, novel electret loudspeakers have attracted much interest due to their being lightweight, paper thin, and possessing excellent mid- to high-frequency responses. Increasing or decreasing the directivity of an electret loudspeaker makes it excellent for adoption to many applications, especially for directing sound to a particular area or specific audio location. Herein, we detail a novel electret loudspeaker that possesses various directivities and is based on various structures of spacers instead of having to use multichannel amplifiers and a complicated digital control system. In order to study the directivity of an electret loudspeaker based on an array structure which can be adopted for various applications, the horizontal and vertical polar directivity characteristics as a function of frequency were simulated by a finite-element analysis model. To validate the finite-element analysis model, the beam pattern of the electret loudspeaker was measured in an anechoic room. Both the simulated and experimental results are detailed in this article to validate the various assertions related to the directivity of electret cell-based smart speakers.


Sign in / Sign up

Export Citation Format

Share Document