Sucrose Transporter Gene AtSUC4 Regulates Sucrose Distribution and Metabolism in Response to Salt Stress in Arabidopsis thaliana

2013 ◽  
Vol 726-731 ◽  
pp. 217-221 ◽  
Author(s):  
Xue Gong ◽  
Ming Li Liu ◽  
Che Wang ◽  
Li Jun Zhang ◽  
Wei Liu

Sporadic reports indicated that salt stress induced the expression of sucrose transporter genes, and sucrose transporters (SUCs or SUTs) as the important carriers are responsible for the loading, unloading and distribution of sucrose, but the study that SUCs are involved in sucrose distribution and metabolism under salt stress at the whole-plant level has not been reported to date. AtSUC4, as the unique member of low affinity/high capacity SUT4-clade inArabidopsis thaliana, may play an important role in plant stress tolerance. Here, through analyzing two homozygous mutation lines ofAtSUC4(Atsuc4-1andAtsuc4-2), we found salt stress induced higher sucrose, fructose and glucose content in shoots and lower sucrose, fructose and glucose content in roots of these mutants compared with the wild-type (WT), resulting in an imbalance of sucrose distribution and fructose and glucose accumulation changes of sucrose metabolitesat the whole-plant level. Our results indicated thatAtSUC4is involved in salt stress tolerance by the regulation of sucrose distribution and metabolism.

2013 ◽  
Vol 765-767 ◽  
pp. 2971-2975 ◽  
Author(s):  
Xue Gong ◽  
Ming Li Liu ◽  
Li Jun Zhang ◽  
Wei Liu ◽  
Che Wang

Sucrose transporters (SUCs or SUTs) are considered as the important carriers and responsible for the loading, unloading and distribution of sucrose, but at present there is no report that SUCs are involved in sucrose distribution and metabolism under drought stress at the whole-plant level. AtSUC4, as the unique member of SUT4-clade inArabidopsis thaliana, may be important for plant stress tolerance. Here, by analyzing two homozygous mutation lines ofAtSUC4(Atsuc4-1andAtsuc4-2), we found drought stress induced higher sucrose, lower fructose and glucose contents in shoots, and lower sucrose, higher fructose and glucose contents in roots of these mutants compared with the wild-type (WT), leading to an imbalance of sucrose distribution, fructose and glucose (sucrose metabolites) accumulation changes at the whole-plant level. Thus we believe thatAtSUC4regulates sucrose distribution and metabolism in response to drought stress.


2020 ◽  
Vol 64 ◽  
pp. 150-158
Author(s):  
L.-L. YU ◽  
Y. LIU ◽  
F. ZHU ◽  
X.-X. GENG ◽  
Y. YANG ◽  
...  

2008 ◽  
Vol 35 (11) ◽  
pp. 1147 ◽  
Author(s):  
Angélique Christophe ◽  
Véronique Letort ◽  
Irène Hummel ◽  
Paul-Henry Cournède ◽  
Philippe de Reffye ◽  
...  

Arabidopsis thaliana (L.) Heynh. is used as a model plant in many research projects. However, few models simulate its growth at the whole-plant scale. The present study describes the first model of Arabidopsis growth integrating organogenesis, morphogenesis and carbon-partitioning processes for aerial and subterranean parts of the plant throughout its development. The objective was to analyse competition among sinks as they emerge from patterns of plant structural development. The model was adapted from the GreenLab model and was used to estimate organ sink strengths by optimisation against biomass measurements. Dry biomass production was calculated by a radiation use efficiency-based approach. Organogenesis processes were parameterised based on experimental data. The potential of this model for growth analysis was assessed using the Columbia ecotype, which was grown in standard environmental conditions. Three phases were observed in the overall time course of trophic competition within the plant. In the vegetative phase, no competition was observed. In the reproductive phase, competition increased with a strong increase when lateral inflorescences developed. Roots and internodes and structures bearing siliques were strong sinks and had a similar impact on competition. The application of the GreenLab model to the growth analysis of A. thaliana provides new insights into source–sink relationships as functions of phenology and morphogenesis.


2014 ◽  
Vol 15 (8) ◽  
pp. 14819-14834 ◽  
Author(s):  
Xunji Chen ◽  
Quansheng Huang ◽  
Fan Zhang ◽  
Bo Wang ◽  
Jianhua Wang ◽  
...  

2019 ◽  
Author(s):  
Kai Bartusch ◽  
Jana Trenner ◽  
Marcel Quint

AbstractCotyledon micrografting represents a very useful tool for studying the central role of cotyledons during early plant development, especially their interplay with other plant organs with regard to long distance transport. While hypocotyl grafting methods are established, cotyledon grafting is still inefficient. By optimizing cotyledon micrografting, we aim for higher success rates and increased throughput in the model species Arabidopsis thaliana. We established a cut and paste cotyledon surgery procedure on a flat solid but moist surface which improved handling of small plant seedlings. Applying a specific cutting and joining pattern throughput was increased up to 40 seedlings per hour. The combination of short day conditions and low light intensities for germination and long day plus high light intensities and vertical plate positioning after grafting significantly increased ‘ligation’ efficiency. Together, we achieved up to 46 % grafting success in A. thaliana. Reconnection of vasculature was shown by successful transport of a vasculature-specific dye across the grafting site. On a whole plant level, plants with grafted cotyledons match plants with intact cotyledons in biomass production and rosette development. This cut and paste cotyledon-to-petiole grafting protocol simplifies the handling of plant seedlings in surgery, increases the number of grafted plants per hour and produces higher success rates for A. thaliana seedlings. The developed cotyledon micrografting method is also suitable for other plant species of comparable size.


Sign in / Sign up

Export Citation Format

Share Document