Numerical Simulation of Effects of Gravity on the Micro Jet Flame in the Confined Space

2013 ◽  
Vol 732-733 ◽  
pp. 127-132
Author(s):  
Yun Hua Gan ◽  
Yan Lai Luo

A microscale ceramic tube was used as a burner jet, and a coaxial jet flame was established in the confined space between the ceramic tube and the outer quartz glass tube. The effects of gravity on the small jet flame characteristics in the confined space were investigated numerically. Comparisons between the experimental data and the numerical data showed that characteristics of the small jet flame structure and temperature field were in good agreement. It verified the accuracy of the numerical simulation. Numerical simulations of flame characteristics at zero gravity level were performed. The results show that the gravity level has a greater influence on the flame width than that on the flame length. The chemical reaction rate is larger under the condition of normal gravity than that of zero gravity.

2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Fouad Khaldi

The ability to use a magnetic field as a means for controlling the role of gravity buoyancy on the combustion process is demonstrated by applying a strong vertical magnetic field gradient on a laminar gas jet diffusion flame. The confirmation is based on a comparison of flame appearance; in particular, length variation, to both elevated gravity (higher than earth’s gravity) and zero-gravity combustion experimental data. The comparison parameter is the dimensionless number G, defined as the ratio of gravity level generated by magneto-gravity buoyancy to earth’s gravity. The more important results are as follows. First, for G > 1, good agreement between magnetic and centrifuge length scaling laws reveals that the slight decrease of flame length according to L ∼ G−1/8 is the result of increasing artificial magnetically induced gravity strength. It ensues that flame thinning, bluing, lifting, and extinction are produced by similar mechanisms previously identified in centrifuge diffusion flames. Thereafter, at G ≅ 0, the flame assumes a nearly hemispheric shape and a blue color in perfect similarity to nonbuoyant flames under zero-gravity conditions generated in drop towers. Another important fact is that the magnetic field offers the ability to observe the flame behavior at low gravity levels 0 < G < 1. A primary interesting result is that flame length varies strongly, following the scaling law L ∼ G−1/2.


2005 ◽  
Vol 127 (1) ◽  
pp. 187-196 ◽  
Author(s):  
Lyle M. Pickett ◽  
Dennis L. Siebers

The effects of orifice diameter on several aspects of diesel fuel jet flame structure were investigated in a constant-volume combustion vessel under heavy-duty direct-injection (DI) diesel engine conditions using Phillips research grade #2 diesel fuel and orifice diameters ranging from 45 μm to 180 μm. The overall flame structure was visualized with time-averaged OH chemiluminescence and soot luminosity images acquired during the quasi-steady portion of the diesel combustion event that occurs after the transient premixed burn is completed and the flame length is established. The lift-off length, defined as the farthest upstream location of high-temperature combustion, and the flame length were determined from the OH chemiluminescence images. In addition, relative changes in the amount of soot formed for various conditions were determined from the soot incandescence images. Combined with previous investigations of liquid-phase fuel penetration and spray development, the results show that air entrainment upstream of the lift-off length (relative to the amount of fuel injected) is very sensitive to orifice diameter. As orifice diameter decreases, the relative air entrainment upstream of the lift-off length increases significantly. The increased relative air entrainment results in a reduced overall average equivalence ratio in the fuel jet at the lift-off length and reduced soot luminosity downstream of the lift-off length. The reduced soot luminosity indicates that the amount of soot formed relative to the amount of fuel injected decreases with orifice diameter. The flame lengths determined from the images agree well with gas jet theory for momentum-driven nonpremixed turbulent flames.


Author(s):  
Yu-chun Cao ◽  
Zheng-wei Wang

Nowadays as clean energy gas is being got more widely utilization in the industrial fields, such as the industrial boilers and kilns. How to improve the combustion performance, including the high efficiency and low pollution emission of the gas flame, is becoming the hot topic for the combustion researchers. In this paper, an innovative jet flame with side micro-jets has been proposed and its effects on the flame structure and its performance have also been investigated. Due to the changes of the initial combustion conditions, mixing and aerodynamics which results from the perturbation of the side micro-jets, such a lifted jet flame have different flame structure compared with the common premixed flame. Results show that use of the micro-jets can control, to a certain extent, the flame structure, including the flame length, lift-off distance and blow-off limit. With the same fuel and air flow rate, the flame length with the side micro-jets will decrease about 5%–40% as the air volume ratio a increases from 58%–76%. Compared with the common diffusion flame, such a jet flame demonstrates to be easier to be momentum-dominated flame. The flame length with 2 micro-jets is about 5% less than with 6 micro-jets under the same fuel and air flow rate. With the same α, the fewer number of the controlled jets lead to the flame with relatively shorter length, not easier to be blown off and higher NOx emission. With certain fuel flow rate, the critical air volume ratio is largest for the flame with 3 micro-jets, which is more difficult to be blown off than the cases with 2, 4 or 6 micro-jets.


Author(s):  
Lyle M. Pickett ◽  
Dennis L. Siebers

Abstract The effects of orifice diameter on several aspects of diesel fuel jet flame structure were investigated in a constant-volume combustion vessel under heavy-duty, direct-injection (DI) diesel engine conditions using Phillips research grade #2 diesel fuel and orifice diameters ranging from 45 μm to 180 μm. The overall flame structure was visualized with time-averaged OH chemiluminescence and soot luminosity images acquired during the quasi-steady portion of the diesel combustion event that occurs after the transient premixed burn is completed and the flame length is established. The lift-off length, defined as the farthest upstream location of high-temperature combustion, and the flame length were determined from the OH chemiluminescence images. In addition, relative changes in the amount of soot formed for various conditions were determined from the soot incandescence images. Combined with previous investigations of liquid-phase fuel penetration and spray development, the results show that air entrainment upstream of the lift-off length (relative to the amount of fuel injected) is very sensitive to orifice diameter. As orifice diameter decreases, the relative air entrainment upstream of the lift-off length increases significantly. The increased relative air entrainment results in a reduced overall average equivalence ratio in the fuel jet at the lift-off length and reduced soot luminosity downstream of the lift-off length. The reduced soot luminosity indicates that the amount of soot formed relative to the amount of fuel injected decreases with orifice diameter. The flame lengths determined from the images agree well with gas jet theory for momentum-driven, non-premixed turbulent flames.


2020 ◽  
Vol 217 ◽  
pp. 57-76 ◽  
Author(s):  
Deepak K. Dalakoti ◽  
Bruno Savard ◽  
Evatt R. Hawkes ◽  
Armin Wehrfritz ◽  
Haiou Wang ◽  
...  

2015 ◽  
Vol 19 (1) ◽  
pp. 21-34 ◽  
Author(s):  
Amir Mardani ◽  
Sadegh Tabejamaat

In this paper, turbulent non-premixed CH4+H2 jet flame issuing into a hot and diluted co-flow air is studied numerically. This flame is under condition of the moderate or intense low-oxygen dilution (MILD) combustion regime and related to published experimental data. The modelling is carried out using the EDC model to describe turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. The flame structure for various O2 levels and jet Reynolds numbers are investigated. The results show that the flame entrainment increases by a decrease in O2 concentration at air side or jet Reynolds number. Local extinction is seen in the upstream and close to the fuel injection nozzle at the shear layer. It leads to the higher flame entertainment in MILD regime. The turbulence kinetic energy decay at centre line of jet decreases by an increase in O2 concentration at hot Co-flow. Also, increase in jet Reynolds or O2 level increases the mixing rate and rate of reactions.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
N. J. Moore ◽  
J. L. McCraw ◽  
K. M. Lyons

The mechanisms that cause jet-flame blowout, particularly in the presence of air coflow, are not completely understood. This work examines the role of fuel velocity and air coflow in the blowout phenomenon by examining the transient behavior of the reaction zoneat blowout. The results of video imaging of a lifted methane-air diffusion flame at near blowout conditions are presented. Two types of experiments are described. In the first investigation, a flame is established and stabilized at a known, predetermined downstream location with a constant coflow velocity, and then the fuel velocity is subsequently increased to cause blowout. In the other, an ignition source is used to maintain flame burning near blowout and the subsequent transient behavior to blowout upon removal of the ignition source is characterized. Data from both types of experiments are collected at various coflow and jet velocities. Images are used to ascertain the changes in the leading edge of the reaction zone prior to flame extinction that help to develop a physically-based model to describe jet-flame blowout. The data report that a consistent predictor of blowout is the prior disappearance of the axially oriented flame branch. This is witnessed despite a turbulent flames' inherent variable behavior. Interpretations are also made in the light of analytical mixture fraction expressions from the literature that support the notion that flame blowout occurs when the leading edge reaches the vicinity of the lean-limit contour, which coincides approximately with the conditions for loss of the axially oriented flame structure.


Sign in / Sign up

Export Citation Format

Share Document